Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
IEEE Trans Image Process ; 32: 4989-5003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647189

RESUMO

Human Action Recognition plays a driving engine of many human-computer interaction applications. Most current researches focus on improving the model generalization by integrating multiple homogeneous modalities, including RGB images, human poses, and optical flows. Furthermore, contextual interactions and out-of-context sign languages have been validated to depend on scene category and human per se. Those attempts to integrate appearance features and human poses have shown positive results. However, with human poses' spatial errors and temporal ambiguities, existing methods are subject to poor scalability, limited robustness, and sub-optimal models. In this paper, inspired by the assumption that different modalities may maintain temporal consistency and spatial complementarity, we present a novel Bi-directional Co-temporal and Cross-spatial Attention Fusion Model (B2C-AFM). Our model is characterized by the asynchronous fusion strategy of multi-modal features along temporal and spatial dimensions. Besides, the novel explicit motion-oriented pose representations called Limb Flow Fields (Lff) are explored to alleviate the temporal ambiguity regarding human poses. Experiments on publicly available datasets validate our contributions. Abundant ablation studies experimentally show that B2C-AFM achieves robust performance across seen and unseen human actions. The codes are available at https://github.com/gftww/B2C.git.


Assuntos
Atividades Humanas , Reconhecimento Automatizado de Padrão , Humanos , Movimento (Física)
2.
J Mol Recognit ; 31(8): e2712, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29655217

RESUMO

As a promising biolabeling biomaterials, quantum dots (QDs) present a great potential. However, the toxicity of QDs to organisms has attracted wide attention. In our research, we introduced an in vitro method to study the molecular mechanisms for the structure and activity alterations of Candida rugosa lipase (CRL) with the binding of 3-mercaptopropionic acid-capped CdTe QDs. Multiple spectroscopic methods, isothermal titration calorimetry, and enzyme activity measurements were used in this paper. QDs statically quenched the intrinsic fluorescence of CRL with the quenching constant decreases from 2.46 × 1013 to 1.64 × 1013  L mol-1  second-1 (298 to 310 K). It binds to CRL through hydrophobic force with 1 binding site, unfolding and loosening the skeleton and changed its secondary structure. Rather than aggregating on the surface, it enters the pocket of the CRL to interact with Ser-209 (2.43 Å) and the residues surrounding Ser-209, making the catalytic triad more exposed. Furthermore, the activity of CRL was inhibited by approximately 15%. This work demonstrates that 3-mercaptopropionic acid-capped CdTe QDs may cause negative effects to CRL and obtains a molecular mechanism on QD-induced toxicity to proteins in vitro.


Assuntos
Candida/enzimologia , Lipase/química , Pontos Quânticos/química , Ácido 3-Mercaptopropiônico/química , Compostos de Cádmio/química , Candida/química , Ligação Proteica , Proteínas/química , Pontos Quânticos/toxicidade , Análise Espectral , Telúrio/química , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA