Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 40(4): 1842-1848, 2019 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-31087927

RESUMO

To enhance the heavy metal cation adsorption capacity of sewage sludge-derived biochar in an aqueous medium with a high concentration of Ca2+, modified biochars were obtained from co-pyrolysis of sewage sludge and transition metal oxides (with a sewage sludge:transition metal mass ratio of 10:1), such as Fe2O3, MnO2, and ZnO. The properties of the modified biochars were characterized, and the Cd2+ adsorption effect of the modified biochars was determined as well. The H/C atom ratios of the modified biochars were all lower than 0.31, indicating that the transition metal oxides catalyzed the decomposition and volatilization of organic matter in sewage sludge. The majority of the added Fe and Mn remained in the modified biochars, and existed as a simple substance and oxide, respectively; while significant loss of Zn occurred. The pores of the modified biochars were mainly mesopores with an average pore size of approximately 3.8 nm, and the specific surface area of the modified biochars was larger than 50 m2·g-1. When the initial Cd2+ concentration was increased from 0 mg·L-1 to approximately 200 mg·L-1, the Cd2+ adsorption capacity of the Fe-modified biochar declined from 43.17 mg·g-1 to 27.88 mg·g-1, which was still higher than that of the unmodified biochar by at least 10 mg·g-1. In aqueous media with a high concentration of Ca2+, the Fe-modified biochar showed better Cd2+ adsorption performance; thus, compared to MnO2 and ZnO, Fe2O3 was the best choice to enhance the heavy metal adsorption performance of the sewage sludge-derived biochar.

2.
J Mol Model ; 23(8): 237, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28735498

RESUMO

The cooperativity effects of the H-bonding interactions in HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazacyclooctane)∙∙∙HMX∙∙∙FA (formamide), HMX∙∙∙HMX∙∙∙H2O and HMX∙∙∙HMX∙∙∙HMX complexes involving the chair and chair-chair HMX are investigated by using the ONIOM2 (CAM-B3LYP/6-31++G(d,p):PM3) and ONIOM2 (M06-2X/6-31++G(d,p):PM3) methods. The solvent effect of FA or H2O on the cooperativity effect in HMX∙∙∙HMX∙∙∙HMX are evaluated by the integral equation formalism polarized continuum model. The results show that the cooperativity and anti-cooperativity effects are not notable in all the systems. Although the effect of solvation on the binding energy of ternary system HMX∙∙∙HMX∙∙∙HMX is not large, that on the cooperativity of H-bonds is notable, which leads to the mutually strengthened H-bonding interaction in solution. This is perhaps the reason for the formation of different conformation of HMX in different solvent. Surface electrostatic potential and reduced density gradient are used to reveal the nature of the solvent effect on cooperativity effect in HMX∙∙∙HMX∙∙∙HMX. Graphical abstract RDG isosurface and electrostatic potential surface of HMX∙∙∙HMX∙∙∙HMX.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA