Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6470, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833361

RESUMO

Horse chestnut (Aesculus chinensis) is an important medicinal tree that contains various bioactive compounds, such as aescin, barrigenol-type triterpenoid saponins (BAT), and aesculin, a glycosylated coumarin. Herein, we report a 470.02 Mb genome assembly and characterize an Aesculus-specific whole-genome duplication event, which leads to the formation and duplication of two triterpenoid biosynthesis-related gene clusters (BGCs). We also show that AcOCS6, AcCYP716A278, AcCYP716A275, and AcCSL1 genes within these two BGCs along with a seed-specific expressed AcBAHD6 are responsible for the formation of aescin. Furthermore, we identify seven Aesculus-originated coumarin glycoside biosynthetic genes and achieve the de novo synthesis of aesculin in E. coli. Collinearity analysis shows that the collinear BGC segments can be traced back to early-diverging angiosperms, and the essential gene-encoding enzymes necessary for BAT biosynthesis are recruited before the splitting of Aesculus, Acer, and Xanthoceras. These findings provide insight on the evolution of gene clusters associated with medicinal tree metabolites.


Assuntos
Aesculus , Escina , Aesculus/genética , Esculina , Escherichia coli
2.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4959-4966, 2023 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37802837

RESUMO

The suitable habitat for the endangered and valuable medicinal herb Panax ginseng is gradually decreasing. It is crucial to investigate its suitable growing areas in China for global protection and sustainable utilization of P. ginseng. In this study, 371 distribution points of P. ginseng were collected, and 21 environmental factors were used as ecological indicators. The geographic information system for global medicinal plants(GMPGIS) system, MaxEnt model, and Thiessen polygon method were used to analyze the potential suitable areas for P. ginseng globally. The results showed that the key environmental variables affecting P. ginseng were precipitation in the hottest quarter(Bio18) and the coefficient of temperature seasonality(Bio4). The suitable habitats for P. ginseng were mostly located in the "One Belt, One Road" countries such as China, Japan, South Korea, North Korea, and Russia. The highly suitable habitats were mainly distributed along mountain ranges in southeastern Shandong, southern Shanxi and Shaanxi, northern Jiangsu, and northwestern Henan of China. Data analysis indicated that the current P. ginseng planting sites were all in high suitability zones, and the Thiessen polygon results showed that the geographic locations of P. ginseng production companies were unbalanced and urgently needed optimization. This study provides data support for P. ginseng planting site selection, scientific introduction, production layout, and long-term development planning.


Assuntos
Panax , Plantas Medicinais , Ecossistema , China , Sistemas de Informação Geográfica , Temperatura
3.
Hortic Res ; 10(9): uhad150, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37691962

RESUMO

Is Cannabis a boon or bane? Cannabis sativa has long been a versatile crop for fiber extraction (industrial hemp), traditional Chinese medicine (hemp seeds), and recreational drugs (marijuana). Cannabis faced global prohibition in the twentieth century because of the psychoactive properties of ∆9-tetrahydrocannabinol; however, recently, the perspective has changed with the recognition of additional therapeutic values, particularly the pharmacological potential of cannabidiol. A comprehensive understanding of the underlying mechanism of cannabinoid biosynthesis is necessary to cultivate and promote globally the medicinal application of Cannabis resources. Here, we comprehensively review the historical usage of Cannabis, biosynthesis of trichome-specific cannabinoids, regulatory network of trichome development, and synthetic biology of cannabinoids. This review provides valuable insights into the efficient biosynthesis and green production of cannabinoids, and the development and utilization of novel Cannabis varieties.

4.
Int J Biol Macromol ; 242(Pt 4): 124934, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224907

RESUMO

Plant ATP-binding cassette (ABC) transporters contribute the transport of diverse secondary metabolites. However, their roles in cannabinoid trafficking are still unsolved in Cannabis sativa. In this study, 113 ABC transporters were identified and characterized in C. sativa from their physicochemical properties, gene structure, and phylogenic relationship, as well as spatial gene expression patterns. Eventually, seven core transporters were proposed including one member in ABC subfamily B (CsABCB8) and six ABCG members (CsABCG4, CsABCG10, CsABCG11, CsABCG32, CsABCG37, and CsABCG41), harboring potential in participating cannabinoid transport, by combining phylogenetic and co-expression analysis from the gene and metabolite level. The candidate genes exhibited a high correlation with cannabinoid biosynthetic pathway genes and the cannabinoid content, and they were highly expressed where cannabinoids appropriately biosynthesized and accumulated. The findings underpin further research on the function of ABC transporters in C. sativa, especially in unveiling the mechanisms of cannabinoid transport to boost systematic and targeted metabolic engineering.


Assuntos
Canabinoides , Cannabis , Transportadores de Cassetes de Ligação de ATP/metabolismo , Cannabis/genética , Canabinoides/genética , Filogenia
5.
Front Plant Sci ; 14: 1133616, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063227

RESUMO

Introduction: Flower color is an ideal trait for studying the molecular basis for phenotypic variations in natural populations of species. Epimedium (Berberidaceae) species exhibit a wide range of flower colors resulting from the varied accumulation of anthocyanins and other pigments in their spur-like petals and petaloid sepals. Methods: In this work, the anthocyanidins of eight different Epimedium species with different floral pigmentation phenotypes were analyzed using HPLC. Twelve genes involved in anthocyanin biosynthesis were cloned and sequenced, and their expression was quantified. Results: The expression levels of the catalytic enzyme genes DFR and ANS were significantly decreased in four species showing loss of floral pigmentation. Complementation of EsF3'H and EsDFR in corresponding Arabidopsis mutants together with overexpression of EsF3'5'H in wild type Arabidopsis analysis revealed that these genes were functional at the protein level, based on the accumulation of anthocyanin pigments. Discussion: These results strongly suggest that transcriptional regulatory changes determine the loss of anthocyanins to be convergent in the floral tissue of Epimedium species.

6.
Plant Physiol Biochem ; 194: 696-707, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36565614

RESUMO

Tartary buckwheat is rich in flavonoids, which not only play an important role in the plant-environment interaction, but are also beneficial to human health. Rutin is a therapeutic flavonol which is massively accumulated in Tartary buckwheat. It has been demonstrated that transcription factors control rutin biosynthesis. However, the transcriptional regulatory network of rutin is not fully clear. In this study, through transcriptome and target metabolomics, we validated the role of FtMYB102 and FtbHLH4 TFs at the different developmental stages of Tartary buckwheat. The elevated accumulation of rutin in the sprout appears to be closely associated with the expression of FtMYB102 and FtbHLH4. Yeast two-hybrid, transient luciferase activity and co-immunoprecipitation demonstrated that FtMYB102 and FtbHLH4 can interact and form a transcriptional complex. Moreover, yeast one-hybrid showed that both FtMYB102 and FtbHLH4 directly bind to the promoter of chalcone isomerase (CHI), and they can coordinately induce CHI expression as shown by transient luciferase activity assay. Finally, we transferred FtMYB102 and FtbHLH4 into the hairy roots of Tartary buckwheat and found that they both can promote the accumulation of rutin. Our results indicate that FtMYB102 and FtbHLH4 can form a transcriptional complex by inducing CHI expression to coordinately promote the accumulation of rutin.


Assuntos
Fagopyrum , Rutina , Fagopyrum/genética , Fagopyrum/metabolismo , Flavonoides/metabolismo , Luciferases/metabolismo , Rutina/metabolismo , Técnicas do Sistema de Duplo-Híbrido
7.
Microb Cell Fact ; 21(1): 215, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243861

RESUMO

BACKGROUND: Flavonoids are necessary for plant growth and resistance to adversity and stress. They are also an essential nutrient for human diet and health. Among the metabolites produced in Cannabis sativa (C. sativa), phytocannabinoids have undergone extensive research on their structures, biosynthesis, and biological activities. Besides the phytocannabinoids, C. sativa is also rich in terpenes, alkaloids, and flavonoids, although little research has been conducted in this area. RESULTS: In this study, we identified 11 classes of key enzyme-encoding genes, including 56 members involved in the flavonoid biosynthesis in C. sativa, from their physical characteristics to their expression patterns. We screened the potentially step-by-step enzymes catalyzing the precursor phenylalanine to the end flavonoids using a conjoin analysis of gene expression with metabolomics from different tissues and chemovars. Flavonol synthase (FLS), belonging to the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily, catalyzes the dihydroflavonols to flavonols. In vitro recombinant protein activity analysis revealed that CsFLS2 and CsFLS3 had a dual function in converting naringenin (Nar) to dihydrokaempferol (DHK), as well as dihydroflavonols to flavonols with different substrate preferences. Meanwhile, we found that CsFLS2 produced apigenin (Api) in addition to DHK and kaempferol when Nar was used as the substrate, indicating that CsFLS2 has an evolutionary relationship with Cannabis flavone synthase I. CONCLUSIONS: Our study identified key enzyme-encoding genes involved in the biosynthesis of flavonoids in C. sativa and highlighted the key CsFLS genes that generate flavonols and their diversified functions in C. sativa flavonoid production. This study paves the way for reconstructing the entire pathway for C. sativa's flavonols and cannflavins production in heterologous systems or plant culture, and provides a theoretical foundation for discovering new cannabis-specific flavonoids.


Assuntos
Cannabis , Dioxigenases , Apigenina , Cannabis/genética , Cannabis/metabolismo , Dioxigenases/genética , Flavonoides , Flavonóis , Humanos , Quempferóis , Ácidos Cetoglutáricos/metabolismo , Fenilalanina , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/metabolismo , Terpenos
8.
Front Plant Sci ; 13: 1021088, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36311070

RESUMO

The medicinal plant Cannabis sativa L. (C. sativa) accumulates plant cytotoxic but medicinally important cannabinoids in glandular trichomes and flowers of female plants. Although the major biosynthetic pathway of cannabinoids has been revealed, their transportation mechanism is still unknown. Multidrug and toxic compound extrusion proteins (MATEs) can transport plant metabolites, ions and phytohormones intra and inter-cellularly. MATEs could have the potential to translocate cannabinoids or their synthetic intermediates to cellular compartment, thus protecting them from unwanted modifications and cytotoxicity. In this study, we performed a genome-wide identification and expression analysis of Cannabis sativa MATEs (CsMATEs) and revealed 42 CsMATEs that were classified phylogenetically into four conserved subfamilies. Forty-two CsMATEs were unevenly distributed on 10 chromosomes, with 50% CsMATEs were physically adjacent to at least one another CsMATEs and 83% CsMATEs localized on plasma membrane. Tandem duplication is the major evolutionary driving force for CsMATEs expansion. Real-time quantitative PCR revealed CsMATE23, CsMATE28 and CsMATE34 mainly expressed in flower, whereas CsMATE17 and CsMATE27 showed strong transcription in root. Light responsive cis-acting element was most abundant in promoters of CsMATE23, CsMATE28 and CsMATE34. Finally, the contents of cannabinoids and corresponding biosynthetic intermediates as well as expressions of CsMATE28 and CsMATE34 were determined under UV-B treatment, among which strong correlation was found. Our results indicates that CsMATEs might involve in biosynthesis of cannabinoids and has the potential to be used in heterologous production of cannabinoids.

9.
Front Microbiol ; 13: 853077, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432289

RESUMO

Rhizosphere microbiome promotes plant growth; however, the succession of rhizosphere microbial community during the growth stages of perennial medicinal plant Panax notoginseng (P. notoginseng) is still unclear. Here, amplicon sequencing was performed to assess the succession characteristics of rhizosphere microbiomes during developmental stages. Results showed that bacterial and fungal communities were mainly shaped by the development stages. The microbial α-diversities first increased and then decreased with plant growth and the variation in microbial composition was active at the 3-year root growth (3YR) stage. The variation trend of cross-domain co-occurrence network complexity was similar to that of α-diversities. Cross-domain nodes decreased at the 3YR stage and fungal nodes increased at the 3YR stage. This study provided a detailed and systematic survey of rhizosphere microbiomes during the growth stages of P. notoginseng. The findings revealed that the development stages of P. notoginseng drove the temporal dynamics of rhizosphere communities. This study helps in harnessing the power of microbiomes to evaluate herbal medicine growth and provides valuable information to guide the microbial breeding of medical plants.

10.
Food Chem X ; 14: 100295, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35372824

RESUMO

Tartary buckwheat sprouts have a high nutritional value and are gluten-free, and polyphenols are their main active constituents. However, information regarding the active constituents' difference of Tartary buckwheat sprouts grown from seeds with different morphology, at different developmental stages and environments is limited. Here, we developed a LC-MS-based targeted metabolomics approach to analyze polyphenols (46 flavonoids and 6 anthraquinones) in 40 Tartary buckwheat sprouts varieties. Both flavonoids and anthraquinones contributed to significant differences in sprouts grown from seed with different color or shape. Twenty-seven differential compounds were all at a higher level in 3-day-old sprouts, and the fold change from 3-day-old to 8-day-old sprouts was 1.42-6.64. A total of 25 differential compounds were all significantly upregulated upon UV-B radiation, especially for epicatechin. This study is valuable not only for better breeding cultivars of Tartary buckwheat sprouts, but also assessing their metabolic quality.

11.
Cannabis Cannabinoid Res ; 7(6): 882-895, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35020417

RESUMO

Background: The bZIP gene family plays roles in biotic and abiotic stress, secondary metabolism, and other aspects in plants. They have been reported in Arabidopsis thaliana, Oryza sativa, Artemisia annua, and other plants, but their roles in Cannabis sativa have not been determined. Materials and Methods: In this study, we analyzed the genome-wide identification and expression profile of the bZIP gene family in C. sativa. Results: A total of 51 members of the bZIP gene family were identified based on the C. sativa genome and numbered in order from CsbZIP1 to CsbZIP51. Their phylogenetic relationships, cis-elements in promoter region, gene structures and motif compositions, physicochemical properties, chromosome locations, and expression profiles, were analyzed. The results showed that the 51 CsbZIPs were unevenly distributed on 10 chromosomes and could be clustered into 11 subfamilies. Furthermore, CsbZIPs located in the same subfamilies presented similar intron/exon organization and motif composition. The expression levels of CsbZIPs in various tissues (flowers, bracts, vegetative leaves, stems, and seeds) were determined using reverse transcription quantitative polymerase chain reaction. The expression levels of CsbZIPs were higher in flowers and bracts. The 51 CsbZIPs were explored, and their structure, evolution, and expression pattern in different tissues of C. sativa were characterized synthetically. The findings indicated that CsbZIPs are essential for the growth and development of C. sativa. Conclusions: These results provide a theoretical basis for subsequent research on hemp bZIP transcription factors and the cultivation of high-cannabidiol and low-tetrahydrocannabinol high-quality cannabis varieties.


Assuntos
Cannabis , Cannabis/genética , Filogenia
12.
Sci China Life Sci ; 65(4): 809-817, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34378141

RESUMO

Genomic data have demonstrated considerable traction in accelerating contemporary studies in traditional medicine. However, the lack of a uniform format and dispersed storage limits the full potential of herb genomic data. In this study, we developed a Global Pharmacopoeia Genome Database (GPGD). The database contains 34,346 records for 903 herb species from eight global pharmacopoeias (Brazilian, Egyptian, European, Indian, Japanese, Korean, the Pharmacopoeia of the People's Republic of China, and U.S. Pharmacopoeia's Herbal Medicines Compendium). In particular, the GPGD contains 21,872 DNA barcodes from 867 species, 2,203 organelle genomes from 674 species, 55 whole genomes from 49 species, 534 genomic sequencing datasets from 366 species, and 9,682 transcriptome datasets from 350 species. Among the organelle genomes, 534 genomes from 366 species were newly generated in this study. Whole genomes, organelle genomes, genomic fragments, transcriptomes, and DNA barcodes were uniformly formatted and arranged by species. The GPGD is publicly accessible at http://www.gpgenome.com and serves as an essential resource for species identification, decomposition of biosynthetic pathways, and molecular-assisted breeding analysis. Thus, the database is an invaluable resource for future studies on herbal medicine safety, drug discovery, and the protection and rational use of herbal resources.


Assuntos
Melhoramento Vegetal , Plantas Medicinais , Medicina Herbária , Humanos , Medicina Tradicional , Fitoterapia , Plantas Medicinais/genética
13.
Front Plant Sci ; 12: 755494, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868143

RESUMO

Histone deacetylases (HDACs) play crucial roles nearly in all aspects of plant biology, including stress responses, development and growth, and regulation of secondary metabolite biosynthesis. The molecular functions of HDACs have been explored in depth in Arabidopsis thaliana, while little research has been reported in the medicinal plant Cannabis sativa L. Here, we excavated 14 CsHDAC genes of C. sativa L that were divided into three relatively conserved subfamilies, including RPD3/HDA1 (10 genes), SIR2 (2 genes), and HD2 (2 genes). Genes associated with the biosynthesis of bioactive constituents were identified by combining the distribution of cannabinoids with the expression pattern of HDAC genes in various organs. Using qRT-PCR and transcription group analysis, we verified the expression of candidate genes in different tissues. We found that the histone inhibitor Trichostatin A (TSA) affected the expression of key genes in the cannabinoid metabolism pathway and the accumulation of synthetic precursors, which indirectly indicates that histone inhibitor may regulate the synthesis of active substances in C. sativa L.

14.
Commun Biol ; 4(1): 1203, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671091

RESUMO

Taxol, a natural product derived from Taxus, is one of the most effective natural anticancer drugs and the biosynthetic pathway of Taxol is the basis of heterologous bio-production. Here, we report a high-quality genome assembly and annotation of Taxus yunnanensis based on 10.7 Gb sequences assembled into 12 chromosomes with contig N50 and scaffold N50 of 2.89 Mb and 966.80 Mb, respectively. Phylogenomic analyses show that T. yunnanensis is most closely related to Sequoiadendron giganteum among the sampled taxa, with an estimated divergence time of 133.4-213.0 MYA. As with most gymnosperms, and unlike most angiosperms, there is no evidence of a recent whole-genome duplication in T. yunnanensis. Repetitive sequences, especially long terminal repeat retrotransposons, are prevalent in the T. yunnanensis genome, contributing to its large genome size. We further integrated genomic and transcriptomic data to unveil clusters of genes involved in Taxol synthesis, located on the chromosome 12, while gene families encoding hydroxylase in the Taxol pathway exhibited significant expansion. Our study contributes to the further elucidation of gymnosperm relationships and the Taxol biosynthetic pathway.


Assuntos
Cycadopsida/classificação , Evolução Molecular , Genoma de Planta , Paclitaxel/biossíntese , Filogenia , Taxus/genética
15.
J Vis Exp ; (157)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32225142

RESUMO

Tartary buckwheat (TB) [Fagopyrum tataricum (L.) Gaertn] possesses various biological and pharmacological activities because it contains abundant secondary metabolites such as flavonoids, especially rutin. Agrobacterium rhizogenes have been gradually used worldwide to induce hairy roots in medicinal plants to investigate gene functions and increase the yield of secondary metabolites. In this study, we have described a detailed method to generate A. rhizogenes-mediated hairy roots in TB. Cotyledons and hypocotyledonary axis at 7-10 days were selected as explants and infected with A. rhizogenes carrying a binary vector, which induced adventitious hairy roots that appeared after 1 week. The generated hairy root transformation was identified based on morphology, resistance selection (kanamycin), and reporter gene expression (green fluorescent protein). Subsequently, the transformed hairy roots were self-propagated as required. Meanwhile, a myeloblastosis (MYB) transcription factor, FtMYB116, was transformed into the TB genome using the A. rhizogenes-mediated hairy roots to verify the role of FtMYB116 in synthesizing flavonoids. The results showed that the expression of flavonoid-related genes and the yield of flavonoid compounds (rutin and quercetin) were significantly (p < 0.01) promoted by FtMYB116, indicating that A. rhizogenes-mediated hairy roots can be used as an effective alternative tool to investigate gene functions and the production of secondary metabolites. The detailed step-by-step protocol described in this study for generating hairy roots can be adopted for any genetic transformation or other medicinal plants after adjustment.


Assuntos
Agrobacterium/metabolismo , Fagopyrum/genética , Fagopyrum/microbiologia , Raízes de Plantas/microbiologia , Transformação Genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Luz , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Rutina/biossíntese , Rutina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Front Pharmacol ; 11: 244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32265692

RESUMO

In Cambodia, medicinal plants are often used to treat various illnesses. However, the identities of many medicinal plants remain unknown. In this study, we collected 50 types of traditional Cambodian medicinal plants that could not be identified by their appearance from a domestic market. We utilized the DNA barcoding technique, combined with the literature survey, to trace their identities. In the end, 33 species were identified at the species level and 7 species were identified at the genus level. The ethnopharmacological information of 33 medicinal plants was documented. The DNA barcoding technique is useful in the identification of medicinal plants with no previous information.

17.
Chin J Nat Med ; 17(7): 481-489, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31514979

RESUMO

American ginseng (Panax quinquefolius L.) is a well-known Asian traditional herbal medicine with a large market demand. The plant is native to eastern North America, and its main producing areas worldwide are decreasing due to continuous cropping obstacles and environmental changes. Therefore, the identification of maximum similarities of new ecological distribution of P. quinquefolius, and prediction of its response to climate change in the future are necessary for plant introduction and cultivation. In this study, the areas with potential ecological suitability for P. quinquefolius were predicted using the geographic information system for global medicinal plants (GMPGIS) based on 476 occurrence points and 19 bioclimatic variables. The results indicate that the new ecologically suitable areas for P. quinquefolius are East Asia and the mid-eastern Europe, which are mainly distributed in China, Russia, Japan, Ukraine, Belarus, North Korean, South Korea, andRomania. Under global climate change scenarios, the suitable planting areas for P. quinquefolius would be increased by 9.16%-30.97%, and expandingnorth and west over the current ecologically suitable areas by 2070. The potential increased areas that are ecologically suitable include northern Canada, Eastern Europe, and the Lesser Khingan Mountains of China, and reduced regions are mainly in central China, the southern U.S., and southern Europe. Jackknife tests indicate that the precipitation of the warmest quarter was the important climatic factor controlling the distribution of P. quinquefolius. Our findings can be used as auseful guide for P. quinquefolius introduction and cultivation in ecologically suitable areas.


Assuntos
Sistemas de Informação Geográfica , Panax/crescimento & desenvolvimento , Plantas Medicinais/crescimento & desenvolvimento , Clima , Mudança Climática , Ecologia , Geografia
18.
Zhongguo Zhong Yao Za Zhi ; 44(2): 283-292, 2019 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-30989947

RESUMO

DNA barcode molecular biological technique is used to identify the species of 23 unknown Li minority medicinal plants.DNA was extracted from 23 unknown medicines using the Plant Genomic DNA Extraction kit. The ITS2 and psbA-trnH regions were amplified and sequenced bi-directionally. The Codon Code Aligner V 7. 0. 1 was used to proofread and assemble the contigs and generated consensus sequences. All the sequences were submitted to Traditional Chinese Medicine DNA Barcode Database and NCBI Gen Bank to get information of the species identifications. If the maximum similarity of the identification result is ≥ 97%,exact species can be known. If it is between 97% and 90%,samples' genus can be confirmed; If it is <90%,then we can only confirm its family. Finally there are 17 samples can be identified to species level,5 can be identified to genus level and 1 can be identified to family level. This shows that DNA barcoding used in medicinal plants molecular identification,can identify unknown species rapidly and accurately.


Assuntos
Código de Barras de DNA Taxonômico , Plantas Medicinais/classificação , DNA de Plantas/genética , Medicina Tradicional Chinesa , Análise de Sequência de DNA
19.
Chin Med ; 14: 4, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30828359

RESUMO

BACKGROUND: The endangered rate of medicinal plant exceeds that of endangered plant species. However, blindly introducing medicinal plants in regions without comprehensively considering the involved environmental factors results in diseases and insect pests and the consequent overproof pesticide residue as well as reduces the quality of herbal medicine produced. METHODS: Global Medicinal Plant Geographic Information System (GMPGIS) was developed to analyze environmental information of ecologically suitable regions, thus guiding the conservation and introduction of medicinal plants. This system is based on theories and methods from multiple disciplines, including computer science, geoinformatics, ecology, and traditional herbal medicine. Using a range-based method, the previously established ecologically suitable regions were evaluated. This new method effectively resolved the problem of outlier points, and its functions were implemented in Python. The system automatically calculates the Euclidean distance of climatic factors and intersection of soil factors, thus identifying regions with high ecological similarity and those are climatically and edaphically suitable for the cultivation of medicinal plants. RESULTS: These results, validated using real-world regions, revealed that GMPGIS is highly accurate in screening ecologically suitable regions for the cultivation of medicinal plants worldwide. CONCLUSIONS: Overall, because of these features, the GMPGIS is considered as a suitable distribution analysis system for global medicinal plant cultivation.

20.
Chin Med ; 13: 58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479655

RESUMO

BACKGROUND: Diosgenin, mainly extracted from wild diosgenin-contained Dioscorea species, is a well-known starting material of steroidal and contraceptive drugs. However, due to large market demand and increasingly ecological damage, wild Dioscorea species resources available have been gradually declining. Therefore, identification of new potential ecological distribution of diosgenin-contained Dioscorea species is necessary for diosgenin production. METHODS: In this study, a large occurrence dataset (1808 data points) of diosgenin-contained Dioscorea species was obtained from Eastern Asia, Southern North America and Southern Africa. Along with the data for six critical environmental parameters and one soil factor, Geographic Information System for Global Medicinal Plant was applied to predict the potential suitable distribution of Dioscorea species. RESULTS: The results showed that the potential distribution of these Dioscorea species covered a wide field, and that new ecological suitability areas were mainly distributed in the central region of South America, the southern part of the European and coastal region of Oceania. Jackknife test indicated that annual precipitation and annual mean radiation were the important climatic factors controlling the distribution of Dioscorea species. CONCLUSIONS: The suitable areas and critical climatic factors will serve as a useful guide for diosgenin-contained Dioscorea species conservation and cultivation in ecological suitable areas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...