Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(7)2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37510251

RESUMO

Raffinose family oligosaccharides (RFOs) are very important for plant growth, development, and abiotic stress tolerance. Galactinol synthase (GolS) and raffinose synthase (RFS) are critical enzymes involved in RFO biosynthesis. However, the whole-genome identification and stress responses of their coding genes in potato remain unexplored. In this study, four StGolS and nine StRFS genes were identified and classified into three and five subgroups, respectively. Remarkably, a total of two StGolS and four StRFS genes in potato were identified to form collinear pairs with those in both Arabidopsis and tomato, respectively. Subsequent analysis revealed that StGolS4 exhibited significantly high expression levels in transport-related tissues, PEG-6000, and ABA treatments, with remarkable upregulation under salt stress. Additionally, StRFS5 showed similar responses to StGolS4, but StRFS4 and StRFS8 gene expression increased significantly under salt treatment and decreased in PEG-6000 and ABA treatments. Overall, these results lay a foundation for further research on the functional characteristics and molecular mechanisms of these two gene families in response to ABA, salt, and drought stresses, and provide a theoretical foundation and new gene resources for the abiotic-stress-tolerant breeding of potato.


Assuntos
Arabidopsis , Solanum tuberosum , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Dissacarídeos/análise , Dissacarídeos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal , Estresse Fisiológico/genética , Arabidopsis/genética
2.
Front Plant Sci ; 13: 1030138, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36325562

RESUMO

Potato (Solanum tuberosum) is currently the third most important food crop in the world. However, the production of potato is seriously threatened by salt stress, which often occurs in the facility cultivation environment, and the mining of salt tolerance genes in potato remains to be further studied. In this study, test-tube plantlets of DM potato were treated with 200-mM NaCl to simulate salt stress, and 15 cDNA libraries were constructed for RNA-seq analysis. A total of 8383 DEGs were identified, of which 3961 DEGs were shared among all the salt treatments, and 264 (7.15%) TF-coding genes were identified from these shared DEGs. KEGG enrichment analysis showed that most DEGs identified from the "arginine and proline metabolism" (ko00330) were enriched in the proline metabolic pathway, and their functions almost covered the whole proline metabolic process. Further analysis showed that expression levels of all the 13 structural DEGs in the pathway were significantly up-regulated and proline accumulation was also significantly increased under salt stress, and 13 TF-hub genes were discovered by WGCNA in the lightcyan and tan modules which were highly positively correlated with the proline contents. Correlation analysis revealed that the four TF-hub genes of the lightcyan module and seven structural DEGs of the proline metabolic pathway might be the potential candidate genes, especially the potential and novel regulatory gene StGLK014720. Furthermore, the dual-luciferase reporter assay confirmed that the key protein StGLK014720 could activate the promoters of both structural genes StAST021010 and StAST017480. In conclusion, these results lay the foundation for further study on the salt tolerance mechanism of potato, and provide a theoretical basis and new genetic resources for salt tolerance breeding of potato.

3.
Aging (Albany NY) ; 14(22): 9243-9263, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36445321

RESUMO

BACKGROUND: Colon cancer (COAD) is the third-largest common malignant tumor and the fourth major cause of cancer death in the world. Endoplasmic reticulum (ER) stress has a great influence on cell growth, migration, proliferation, invasion, angiogenesis, and chemoresistance of massive tumors. Although ER stress is known to play an important role in various types of cancer, the prognostic model based on ER stress-related genes (ERSRGs) in colon cancer has not been constructed yet. In this study, we established an ERSRGs prognostic risk model to assess the survival of COAD patients. METHODS: The COAD gene expression profile and clinical information data of the training set were obtained from the GEO database (GSE40967) and the test set COAD gene expression profile and clinical informative data were downloaded from the TCGA database. The endoplasmic reticulum stress-related genes (ERSRGs) were obtained from Gene Set Enrichment Analysis (GSEA) website. Differentially expressed ERSRGs between normal samples and COAD samples were identified by R "limma" package. Based on the univariate, lasso, and multivariate Cox regression analysis, we developed an ERSRGs prognostic risk model to predict survival in COAD patients. Finally, we verified the function of WFS1 in COAD through in vitro experiments. RESULTS: We built a 9-gene prognostic risk model based on the univariate, lasso, and multivariate Cox regression analysis. Kaplan-Meier survival analysis and Receiver operating characteristic (ROC) curve revealed that the prognostic risk model has good predictive performance. Subsequently, we screened 60 compounds with significant differences in the estimated half-maximal inhibitory concentration (IC50) between high-risk and low-risk groups. In addition, we found that the ERSRGs prognostic risk model was related to immune cell infiltration and the expression of immune checkpoint molecules. Finally, we determined that knockdown of the expression of WFS1 inhibits the proliferation of colon cancer cells. CONCLUSIONS: The prognostic risk model we built may help clinicians accurately predict the survival of patients with COAD. Our findings provide valuable insights into the role of ERSRGs in COAD and may provide new targets for COAD therapy.


Assuntos
Neoplasias do Colo , Estresse do Retículo Endoplasmático , Humanos , Neoplasias do Colo/genética , Estresse do Retículo Endoplasmático/genética , Proteínas de Checkpoint Imunológico , Estimativa de Kaplan-Meier , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA