Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2310622, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377299

RESUMO

As the global population ages, bone diseases have become increasingly prevalent in clinical settings. These conditions often involve detrimental factors such as infection, inflammation, and oxidative stress that disrupt bone homeostasis. Addressing these disorders requires exogenous strategies to regulate the osteogenic microenvironment (OME). The exogenous regulation of OME can be divided into four processes: induction, modulation, protection, and support, each serving a specific purpose. To this end, metal-organic frameworks (MOFs) are an emerging focus in nanomedicine, which show tremendous potential due to their superior delivery capability. MOFs play numerous roles in OME regulation such as metal ion donors, drug carriers, nanozymes, and photosensitizers, which have been extensively explored in recent studies. This review presents a comprehensive introduction to the exogenous regulation of OME by MOF-based nanomaterials. By discussing various functional MOF composites, this work aims to inspire and guide the creation of sophisticated and efficient nanomaterials for bone disease management.

2.
Polymers (Basel) ; 15(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37571097

RESUMO

Blend proton exchange membranes (BPEMs) were prepared by blending sulfonated poly(aryl ether nitrile) (SPAEN) with phosphorylated poly(vinylbenzyl chloride) (PPVBC) and named as SPM-x%, where x refers to the proportion of PPVBC to the weight of SPAEN. The chemical complexation interaction between the phosphoric acid and sulfonic acid groups in the PPVBC-SPAEN system resulted in BPEMs with reduced water uptake and enhanced mechanical properties compared to SPAEN proton exchange membranes. Furthermore, the flame retardancy of the PPVBC improved the thermal stability of the BPEMs. Despite a decrease in ion exchange capacity, the proton conductivity of the BPEMs in the through-plane direction was significantly enhanced due to the introduction of phosphoric acid groups, especially in low relative humidity (RH) environments. The measured proton conductivity of SPM-8% was 147, 98, and 28 mS cm-1 under 95%, 70%, and 50% RH, respectively, which is higher than that of the unmodified SPAEN membrane and other SPM-x% membranes. Additionally, the morphology and anisotropy of the membrane proton conductivities were analyzed and discussed. Overall, the results indicated that PPVBC doping can effectively enhance the mechanical and electrochemical properties of SPAEN membranes.

3.
RSC Adv ; 13(16): 11062-11068, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37063245

RESUMO

The modification of the physicochemical properties of sulfonated poly(arylene ether nitrile) (SPAEN) proton exchange membranes was demonstrated by poly(ethylene-co-vinyl alcohol) (EVOH) doping (named SPAEN-x%). By controlling the temperature during membrane preparation, the side reactions of the sulfonic acid groups to form sulfonic acid esters were effectively prevented, greatly reducing the proton conductivity of the membranes. Due to the flexible chain of EVOH, SPAEN-8% showed a relatively high elongation of 30.2%, which enhanced the aromatic polymers' flexibility. The SPAEN-2% membrane exhibited proton conductivity of 166, 55, and 9.6 mS cm-1 at 95%, 70%, and 50% relative humidity, respectively, higher than those of the other SPAEN-x% membranes and even comparable to that of Nafion 212. The water uptake, morphological study, and through-plane proton conductivity of the membranes were studied and discussed. The results suggest that EVOH doping can be used as an effective strategy to improve SPAEN-based proton exchange membranes' performance.

4.
Chemphyschem ; 24(6): e202200845, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36426857

RESUMO

Extensive efforts to enhance the oxygen evolution reaction (OER) catalytic performance of transition metal oxides mainly concentrate on the extrinsic morphology tailoring, lattice doping, and electrode interface optimizing. Nevertheless, little room is left for performance improvement using these methods and an obvious gap still exists compared to the precious metal catalysts. In this work, a novel "mixed-valent cobalt modulation" strategy is presented to enhance the electrocatalytic OER of perovskite LaCoO3 (LCO) oxide. The valence transition of cobalt is realized by ethylenediamine post reduction procedure at room temperature, which further induces the variation of magnetic properties for LCO catalyst. The optimized LCO catalyst with Co2+ /Co3+ of 1.98 % exhibits the best OER activity, and the overpotential at 10 mA cm-2 current density is decreased by 170 mV compared pristine LCO. Impressively, the ferromagnetic LCO catalyst can perform magnetic OER enhancement. By application of an external magnetic field, the overpotential of LCO at 10 mA cm-2 can be further decreased by 20 mV compared to that of under zero magnetic field, which arises from the enhanced energy states of electrons and accelerated electron transfer process driven by magnetic field. Our findings may provide a promising strategy to break the bottleneck for further enhancement of OER performance.

5.
Nanomaterials (Basel) ; 12(15)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35957050

RESUMO

Electrochemical water splitting has wide applicability in preparing high-density green energy. The Proton exchange membrane (PEM) water electrolysis system is a promising technique for the generation of hydrogen due to its high electrolytic efficiency, safety and reliability, compactness, and quick response to renewable energy sources. However, the instability of catalysts for electrochemical water splitting under operating conditions limits their practical applications. Until now, only precious metal-based materials have met the requirements for rigorous long-term stability and high catalytic activity under acid conditions. In this review, the recent progress made in this regard is presented and analyzed to clarify the role of precious metals in the promotion of the electrolytic decomposition of water. Reducing precious metal loading, enhancing catalytic activity, and improving catalytic lifetime are crucial directions for developing a new generation of PEM water electrolysis catalysts. A summary of the synthesis of high-performance catalysts based on precious metals and an analysis of the factors affecting catalytic performance were derived from a recent investigation. Finally, we present the remaining challenges and future perspectives as guidelines for practical use.

6.
Nanomaterials (Basel) ; 12(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35957091

RESUMO

The energy crisis and environmental issues are becoming more severe due to the long-term consumption of fossil fuels. Therefore, novel energy-conversion devices with high energy density and environmental friendliness are expected to provide reliable alternatives to traditional fossil-based energy systems. However, because of the inevitable use of costly precious metals as the electrode catalysts for such devices, their popularization is seriously hindered. Transition metal nitrides (TMNs) exhibit similar surface and adsorption properties to noble metals because the atomic distance between metal atoms increases and the d-band center of metal atoms downshifts after nitrogen atoms enter the metal lattice. TMNs have become one of the best electrode materials to replace noble metal-based electrocatalysts in next-generation energy-storage and energy-conversion devices. In this review, the recent developments in the electrocatalytic application of TMNs are covered. First, we discuss the structure and activity origin of TMNs and introduce the common synthesis methods for the preparation of TMNs. Subsequently, we illustrate the applications of mono-metallic TMNs and multi-metallic TMNs in oxygen-reduction reaction, oxygen-evolution reaction, and bifunctional oxygen reduction and evolution reactions. Finally, we summarize the challenges of TMNs encountered at the present stage, and expect their future development.

7.
IEEE Trans Cybern ; 52(9): 9861-9870, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34398769

RESUMO

This work explores the effectiveness of the intensity-varied closed-loop noise stimulation on the oscillation suppression in the Parkinsonian state. Deep brain stimulation (DBS) is the standard therapy for Parkinson's disease (PD), but its effects need to be improved. The noise stimulation has compelling results in alleviating the PD state. However, in the open-loop control scheme, the noise stimulation parameters cannot be self-adjusted to adapt to the amplitude of the synchronized neuronal activities in real time. Thus, based on the delayed-feedback control algorithm, an intensity-varied closed-loop noise stimulation strategy is proposed. Based on a computational model of the basal ganglia (BG) that can present the intrinsic properties of the BG neurons and their interactions with the thalamic neurons, the proposed stimulation strategy is tested. Simulation results show that the noise stimulation suppresses the pathological beta (12-35 Hz) oscillations without any new rhythms in other bands compared with traditional high-frequency DBS. The intensity-varied closed-loop noise stimulation has a more profound role in removing the pathological beta oscillations and improving the thalamic reliability than open-loop noise stimulation, especially for different PD states. And the closed-loop noise stimulation enlarges the parameter space of the delayed-feedback control algorithm due to the randomness of noise signals. We also provide a theoretical analysis of the effective parameter domain of the delayed-feedback control algorithm by simplifying the BG model to an oscillator model. This exploration may guide a new approach to treating PD by optimizing the noise-induced improvement of the BG dysfunction.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Gânglios da Base , Estimulação Encefálica Profunda/métodos , Humanos , Doença de Parkinson/terapia , Reprodutibilidade dos Testes , Tálamo/patologia , Tálamo/fisiologia
8.
Cogn Neurodyn ; 15(6): 1157-1167, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34790273

RESUMO

Cortical information has great importance to reflect the deep brain stimulation (DBS) effects for Parkinson's disease patients. Using cortical activities to feedback is an available closed-loop idea for DBS. Previous studies have demonstrated the pathological beta (12-35 Hz) cortical oscillations can be suppressed by appropriate DBS settings. Thus, here we propose to close the loop of DBS based on the beta oscillations in cortex. By modify the cortico-basal ganglia-thalamic neural loop model, more biologically realistic underlying the Parkinsonian phenomenon is approached. Stimulation results show the proposed closed-loop DBS strategy using cortical beta oscillation as feedback information has more profound roles in alleviating the pathological neural abnormality than the traditional open-loop DBS. Additionally, we compare the stimulation effects with subthalamic nucleus feedback strategy. It is shown that using cortical beta information as the feedback signals can further enlarge the control parameter space based on proportional-integral control structure with a lower energy expenditure. This work may pave the way to optimizing the DBS effects in a closed-loop arrangement.

9.
J Colloid Interface Sci ; 581(Pt A): 31-43, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32768733

RESUMO

The use of nanoscale metal-organic frameworks (MOFs) as drug delivery vehicles has attracted considerable attention in tumor therapy. In this study, novel biocompatible MOF-based nanocarriers were used as part of a facile and reproducible strategy for precision cancer theranostics. Both diagnostic (Mn2+) and therapeutic compounds (doxorubicin, DOX) were incorporated into the multifunctional MOF-based nanocarriers, which exhibited high colloidal stability and promoted T1-weighted proton relaxivity and low-pH-activated drug release. The obtained MOF-based nanocarriers exhibited significantly high cellular uptake and efficient intracellular drug delivery into cancer cells, which resulted in high apoptosis and cytotoxicity, in addition to effectively inhibiting the migration of 4T1 breast cancer cells. Moreover, the MOF-based nanocarriers could intensively deliver diagnostic and therapeutic agents to tumors to enable precise visualization of the nanocarrier accumulation and accurate tumor positioning, diagnosis, and imaging-guided therapy using magnetic resonance imaging (MRI). In addition, the functional MOF-based nanocarriers exhibited effective ablation of the primary breast cancer, as well as significant inhibition of lung metastasis with a high survival rate. Therefore, the developed nanocarriers represent a viable platform for cancer theranostics.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Estruturas Metalorgânicas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Imageamento por Ressonância Magnética
10.
Sensors (Basel) ; 20(11)2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32498418

RESUMO

Flows of two immiscible liquids through inclined pipes are often encountered in industrial processes. The interfacial characteristics in inclined pipes are of significance for understanding the mechanism of flow pattern transition and modeling the flow parameters. This paper developed a novel experimental technique to access the interface characteristics of liquid-liquid flows, during which optical and electrical methods were successfully combined by matching the refractive index and conductivity of the flows. A planar laser-induced fluorescence (PLIF) system was set up with a continuous laser and high-speed camera. Organic and aqueous phases were chosen to match refractive indices. The liquid-liquid interface in the middle of the pipe could be clearly visualized by the PLIF system. Meanwhile, two conductance parallel-wire array probes (CPAPs) were designed to reconstruct the liquid-liquid interfaces at upward and downward pipe cross-sections. The performances of the CPAP were validated using the PLIF results and employed to investigate the liquid-liquid interfacial structures. The interfacial shape and its instability were uncovered using the reconstructed interfaces by the CPAPs.

11.
J Nanosci Nanotechnol ; 20(2): 1085-1097, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31383109

RESUMO

Hierarchical nanostructured materials, which possess the porous structure of multiscale porosities on different pore diameters from micro-, meso- to macropores based on International Union of Pure and Applied Chemistry, are much desired to present the synergistic attractive advantages of each scale of hierarchical pores in the development of catalysis, adsorption, separation, energy, and biochemistry. The use of hierarchical nanostructured materials as oxygen reduction reaction (ORR) electrocatalysts is advanced to increase specific surface area for active sites dispersion and exposure as well as enhance reactants/products transfer. However, complex and costly templateincorporated methods and relatively uncontrollable template-free methods motive us to develop novel and efficient preparation methods. Herein, recent developments and synthesis strategies that have been made in the field of hierarchical nanostructured materials as well as their application for ORR electrocatalysts are reviewed.

12.
Biomaterials ; 230: 119614, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31753475

RESUMO

The severe mortality and morbidity of myocardial infarction requests appropriate and accurate detection. Considering pathological profile of the acidic myocardial infarction microenvironments, herein, the low pH-sensitive albumin nanocomposites with MnO2 motifs (MnO2@BSA) have been engineered for T1-weighted MR imaging of myocardial infarction, while using non-pH-responsive Gd2O3@BSA nanocomposites as control. The nanocomposites were 20-30 nm in diameter with spheroid morphology. Besides, the MnO2@BSA have exhibited pH-triggered releasing of Mn2+, demonstrating approximately 38-fold and 55-fold increased molecular relaxivity at acute myocardial infarction-mimicking pH 6.5 (13.08 mM-1s-1) and macrophage intracellular pH 5.0 (18.76 mM-1s-1) compared to the extremely low relaxivity (0.34 mM-1s-1) at normal physiological conditions (pH 7.4). However, the Gd2O3@BSA with molecular relaxivity approximately 10 mM-1s-1 were without pH-sensitive properties. Furthermore, the MnO2@BSA have demonstrated high accumulation in the acute myocardial infarction regions and fast metabolism from the body after systemic injection, accounting high contrast enhancement for accurate MR imaging of acute myocardial infarction in rabbit models, demonstrating better diagnostic performance over the controls.


Assuntos
Compostos de Manganês , Infarto do Miocárdio , Nanocompostos , Nanopartículas , Albuminas , Animais , Meios de Contraste , Imageamento por Ressonância Magnética , Infarto do Miocárdio/diagnóstico por imagem , Óxidos , Coelhos
13.
ChemSusChem ; 13(5): 938-944, 2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-31883349

RESUMO

A novel method for the preparation of iron- and nitrogen-codoped carbon nanotubes (Fe-N-CNTs) is proposed, based on the catalytic pyrolysis of waste plastics. First, carbon nanotubes are produced from pyrolysis of plastic waste over Fe-Al2 O3 ; then, Fe-CNTs and melamine are heated together in an inert atmosphere. Different co-pyrolysis temperatures are tested to optimize the electrocatalyst production. A high doping temperature improves the degree of graphite formation and promotes the conversion of nitrogen into a more stable form. Compared with commercial Pt/C, the electrocatalyst obtained from pyrolysis at 850 °C shows remarkable properties, with an onset potential of 0.943 V versus RHE and a half-wave potential of 0.811 V versus RHE, and even better stability and anti-poisoning properties. In addition, zinc-air battery tests are performed, and the optimized catalyst exhibits a high maximum power density.

14.
Polymers (Basel) ; 11(8)2019 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-31426595

RESUMO

Polyethylene (PE) membranes coated with nano-Al2O3 have been improved with water-dispersed poly(p-phenylene terephthamide) (PPTA). From the scanning electron microscope (SEM) images, it can be seen that a layer with a honeycombed porous structure is formed on the membrane. The thus-formed composite separator imbibed with the electrolyte solution has an ionic conductivity of 0.474 mS/cm with an electrolyte uptake of 335%. At 175 °C, the assembled battery from the synthesized composite separator explodes at 3200 s, which is five times longer than the battery assembled from an Al2O3-coated polyethylene (PE) membrane. The open circuit voltage of the assembled battery using a composite separator drops to zero at 600 s at an operating temperature of 185 °C, while the explosion of the battery with Al2O3-coated PE occurs at 250 s. More importantly, the interface resistance of the cell assembled from the composite separator decreases to 65 Ω. Hence, as the discharge rate increases from 0.2 to 1.0 C, the discharge capacity of the battery using composite separator retains 93.5%. Under 0.5 C, the discharge capacity retention remains 99.4% of its initial discharge capacity after 50 charge-discharge cycles. The results described here demonstrate that Al2O3/PPTA-coated polyethylene membranes have superior thermal stability and ion diffusion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...