Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 445
Filtrar
1.
Exp Hematol Oncol ; 13(1): 58, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822440

RESUMO

BACKGROUND: Gallbladder cancer (GBC) is the most common and lethal malignancy of the biliary tract that lacks effective therapy. In many GBC cases, infiltration into adjacent organs or distant metastasis happened long before the diagnosis, especially the direct liver invasion, which is the most common and unfavorable way of spreading. METHODS: Single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST), proteomics, and multiplexed immunohistochemistry (mIHC) were performed on GBC across multiple tumor stages to characterize the tumor microenvironment (TME), focusing specifically on the preferential enrichment of neutrophils in GBC liver invasion (GBC-LI). RESULTS: Multi-model Analysis reveals the immunosuppressive TME of GBC-LI that was characterized by the enrichment of neutrophils at the invasive front. We identified the context-dependent transcriptional states of neutrophils, with the Tumor-Modifying state being associated with oxidized low-density lipoprotein (oxLDL) metabolism. In vitro assays showed that the direct cell-cell contact between GBC cells and neutrophils led to the drastic increase in oxLDL uptake of neutrophils, which was primarily mediated by the elevated OLR1 on neutrophils. The oxLDL-absorbing neutrophils displayed a higher potential to promote tumor invasion while demonstrating lower cancer cytotoxicity. Finally, we identified a neutrophil-promoting niche at the invasive front of GBC-LI that constituted of KRT17+ GBC cells, neutrophils, and surrounding fibroblasts, which may help cultivate the oxLDL-absorbing neutrophils. CONCLUSIONS: Our study reveals the existence of a subset of pro-tumoral neutrophils with a unique ability to absorb oxLDL via OLR1, a phenomenon induced through cell-cell contact with KRT17+ GBC cells in GBC-LI.

2.
Microorganisms ; 12(5)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38792702

RESUMO

The green and efficient remediation of soil cadmium (Cd) is an urgent task, and plant-microbial joint remediation has become a research hotspot due to its advantages. High-throughput sequencing and metabolomics have technical advantages in analyzing the microbiological mechanism of plant growth-promoting bacteria in improving phytoremediation of soil heavy metal pollution. In this experiment, a pot trial was conducted to investigate the effects of inoculating the plant growth-promoting bacterium Enterobacter sp. VY on the growth and Cd remediation efficiency of the energy plant Hybrid pennisetum. The test strain VY-1 was analyzed using high-throughput sequencing and metabolomics to assess its effects on microbial community composition and metabolic function. The results demonstrated that Enterobacter sp. VY-1 effectively mitigated Cd stress on Hybrid pennisetum, resulting in increased plant biomass, Cd accumulation, and translocation factor, thereby enhancing phytoremediation efficiency. Analysis of soil physical-chemical properties revealed that strain VY-1 could increase soil total nitrogen, total phosphorus, available phosphorus, and available potassium content. Principal coordinate analysis (PCoA) indicated that strain VY-1 significantly influenced bacterial community composition, with Proteobacteria, Firmicutes, Chloroflexi, among others, being the main differential taxa. Redundancy analysis (RDA) revealed that available phosphorus, available potassium, and pH were the primary factors affecting bacterial communities. Partial Least Squares Discriminant Analysis (PLS-DA) demonstrated that strain VY-1 modulated the metabolite profile of Hybrid pennisetum rhizosphere soil, with 27 differential metabolites showing significant differences, including 19 up-regulated and eight down-regulated expressions. These differentially expressed metabolites were primarily involved in metabolism and environmental information processing, encompassing pathways such as glutamine and glutamate metabolism, α-linolenic acid metabolism, pyrimidine metabolism, and purine metabolism. This study utilized 16S rRNA high-throughput sequencing and metabolomics technology to investigate the impact of the plant growth-promoting bacterium Enterobacter sp. VY-1 on the growth and Cd enrichment of Hybrid pennisetum, providing insights into the regulatory role of plant growth-promoting bacteria in microbial community structure and metabolic function, thereby improving the microbiological mechanisms of phytoremediation.

3.
Am J Cancer Res ; 14(4): 1609-1621, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726282

RESUMO

Young breast cancer (YBC) patients often face a poor prognosis, hence it's necessary to construct a model that can accurately predict their long-term survival in early stage. To realize this goal, we utilized data from the Surveillance, Epidemiology, and End Results (SEER) databases between January 2010 and December 2020, and meanwhile, enrolled an independent external cohort from Tianjin Medical University Cancer Institute and Hospital. The study aimed to develop and validate a prediction model constructed using the Random Survival Forest (RSF) machine learning algorithm. By applying the Least Absolute Shrinkage and Selection Operator (LASSO) regression analysis, we pinpointed key prognostic factors for YBC patients, which were used to create a prediction model capable of forecasting the 3-year, 5-year, 7-year, and 10-year survival rates of YBC patients. The RSF model constructed in the study demonstrated exceptional performance, achieving C-index values of 0.920 in the training set, 0.789 in the internal validation set, and 0.701 in the external validation set, outperforming the Cox regression model. The model's calibration was confirmed by Brier scores at various time points, showcasing its excellent accuracy in prediction. Decision curve analysis (DCA) underscored the model's importance in clinical application, and the Shapley Additive Explanations (SHAP) plots highlighted the importance of key variables. The RSF model also proved valuable in risk stratification, which has effectively categorized patients based on their survival risks. In summary, this study has constructed a well-performed prediction model for the evaluation of prognostic factors influencing the long-term survival of early-stage YBC patients, which is significant in risk stratification when physicians handle YBC patients in clinical settings.

4.
Cancer Control ; 31: 10732748241255212, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38769789

RESUMO

OBJECTIVE: A high number of Non-Small Cell Lung Cancer (NSCLC) patients with brain metastasis who have not had surgery often have a negative outlook. Radiotherapy remains a most common and effective method. Nomograms were developed to forecast the cancer-specific survival (CSS) and overall survival (OS) in NSCLC individuals with nonoperative brain metastases who underwent radiotherapy. METHODS: Information was gathered from the Surveillance, Epidemiology, and End Results (SEER) database about patients diagnosed with NSCLC who had brain metastases not suitable for surgery. Nomograms were created and tested using multivariate Cox regression models to forecast CSS and OS at intervals of 1, 2, and 3 years. RESULTS: The research involved 3413 individuals diagnosed with NSCLC brain metastases who had undergone radiotherapy but had not experienced surgery. These participants were randomly divided into two categories. The analysis revealed that gender, age, ethnicity, marital status, tumor location, tumor laterality, tumor grade, histology, T stage, N stage, chemotherapy, tumor size, lung metastasis, bone metastasis, and liver metastasis were significant independent predictors for OS and CSS. The C-index for the training set for predicting OS was .709 (95% CI, .697-.721), and for the validation set, it was .705 (95% CI, .686-.723), respectively. The C-index for predicting CSS was .710 (95% CI, .697-.722) in the training set and .703 (95% CI, .684-.722) in the validation set, respectively. The nomograms model, as suggested by the impressive C-index, exhibits outstanding differentiation ability. Moreover, the ROC and calibration curves reveal its commendable precision and distinguishing potential. CONCLUSIONS: For the first time, highly accurate and reliable nomograms were developed to predict OS and CSS in NSCLC patients with non-surgical brain metastases, who have undergone radiotherapy treatment. The nomograms may assist in tailoring counseling strategies and choosing the most effective treatment method.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nomogramas , Programa de SEER , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Masculino , Feminino , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/mortalidade , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Pessoa de Meia-Idade , Idoso , Prognóstico , Adulto
5.
iScience ; 27(5): 109807, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38766355

RESUMO

Type I interferon (IFN) production is crucial in tuberculosis pathogenesis, yet the bacterial factors initiating this process are incompletely understood. CpsA, protein of Mycobacterium marinum and Mycobacterium tuberculosis, plays a key role in maintaining bacterial virulence and inhibiting host cell LC3-associated phagocytosis. By utilizing CpsA full deletion mutant studies, we re-verified its essential role in infection-induced pathology and revealed its new role in type I IFN expression. CpsA deficiency hindered IFN production in infected macrophages in vitro as well as zebrafish and mice in vivo. This effect was linked to the cGAS-TBK1-IRF3 pathway, as evidenced by decreased TBK1 and IRF3 phosphorylation in CpsA-deficient bacterial strain-infected macrophages. Moreover, we further show that CpsA deficiency cause decreased cytosolic DNA levels, correlating with impaired phagosomal membrane rupture. Our findings reveal a new function of mycobacterial CpsA in type I IFN production and offer insight into the molecular mechanisms underlying mycobacterial infection pathology.

6.
Adv Mater ; : e2400756, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820232

RESUMO

Photothermal immunotherapy has shown great promise in the treatment of tumor metastasis. However, the thermal resistance of tumor cells substantially compromises the treatment effect of photothermal immunotherapy. Herein, a high-performance organic pyroelectric nanoplatform, tBu-TPAD-BF2 nanoparticles (NPs), was rationally engineered for the effective pyroelectroimmunotherapy of tumor metastasis. Biocompatible tBu-TPAD-BF2 NPs with excellent pyroelectric and photothermal conversion properties were constructed by assembling organic, low-bandgap pyroelectric molecules with amphiphilic polymers. After internalization by tumor cells, treatment with tBu-TPAD-BF2 NPs caused an apparent temperature elevation upon near-infrared (NIR) laser irradiation, inducing potent immunogenic cell death (ICD). Additionally, the temperature variations under alternating NIR laser irradiation facilitated reactive oxygen species production for pyroelectric therapy, thus promoting ICD activation and lowering thermal resistance. Importantly, in vivo assessments illustrated that tBu-TPAD-BF2 NPs in combination with NIR laser exposure notably inhibited primary and distant tumor proliferation and prominently retarded lung metastasis. RNA profiling revealed that treatment with tBu-TPAD-BF2 NPs markedly suppressed metastasis under NIR laser illumination by downregulating metastasis-related genes and upregulating immune response-associated pathways. Therefore, this study provides a strategy for designing high-performance pyroelectric nanoplatforms to effectively cure tumor metastasis, thereby overcoming the inherent shortcomings of photothermal immunotherapy. This article is protected by copyright. All rights reserved.

7.
MMWR Morb Mortal Wkly Rep ; 73(15): 339-344, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635474

RESUMO

Nursing home residents are at increased risk for developing severe COVID-19. Nursing homes report weekly facility-level data on SARS-CoV-2 infections, COVID-19-associated hospitalizations, and COVID-19 vaccination coverage among residents to CDC's National Healthcare Safety Network. This analysis describes rates of incident SARS-CoV-2 infection, rates of incident COVID-19-associated hospitalization, and COVID-19 vaccination coverage during October 16, 2023-February 11, 2024. Weekly rates of SARS-CoV-2 infection ranged from 61.4 to 133.8 per 10,000 nursing home residents. The weekly percentage of facilities reporting one or more incident SARS-CoV-2 infections ranged from 14.9% to 26.1%. Weekly rates of COVID-19-associated hospitalization ranged from 3.8 to 7.1 per 10,000 residents, and the weekly percentage of facilities reporting one or more COVID-19-associated hospitalizations ranged from 2.6% to 4.7%. By February 11, 2024, 40.5% of nursing home residents had received a dose of the updated 2023-2024 COVID-19 vaccine that was first recommended in September 2023. Although the peak rate of SARS-CoV-2 infection among nursing home residents was lower during the 2023-24 respiratory virus season than during the three previous respiratory virus seasons, nursing home residents continued to be disproportionately affected by SARS-CoV-2 infection and related severe outcomes. Vaccination coverage remains suboptimal in this population. Ongoing surveillance for SARS-CoV-2 infections and COVID-19-associated hospitalizations in this population is necessary to develop and evaluate evidence-based interventions for protecting nursing home residents.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Estados Unidos/epidemiologia , Humanos , Cobertura Vacinal , COVID-19/epidemiologia , COVID-19/prevenção & controle , SARS-CoV-2 , Casas de Saúde , Vacinação , Hospitalização
8.
Food Funct ; 15(9): 5088-5102, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38666497

RESUMO

Diets rich in taurine can increase the production of taurine-conjugated bile acids, which are known to exert antihypertensive effects. Despite their benefits to the heart, kidney and arteries, their role in the central nervous system during the antihypertensive process remains unclear. Since hypothalamic paraventricular nucleus (PVN) plays a key role in blood pressure regulation, we aimed to investigate the function of bile acids in the PVN. The concentration of bile acids in the PVN of spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto rats (WKY) fed with normal chow was measured using LC-MS/MS, which identified taurocholic acid (TCA) as the most down-regulated bile acid. To fully understand the mechanism of TCA's functions in the PVN, bi-lateral PVN micro-infusion of TCA was carried out. TCA treatment in the PVN led to a significant reduction in the blood pressure of SHRs, with decreased plasma levels of norepinephrine and improved morphology of cardiomyocytes. It also decreased the number of c-fos+ neurons, reduced the inflammatory response, and suppressed oxidative stress in the PVN of the SHRs. Most importantly, the TGR5 receptors in neurons and microglia were activated. PVN infusion of SBI-115, a TGR5 specific antagonist, was able to counteract with TCA in the blood pressure regulation of SHRs. In conclusion, TCA supplementation in the PVN of SHRs can activate TGR5 in neurons and microglia, reduce the inflammatory response and oxidative stress, suppress activated neurons, and attenuate hypertension.


Assuntos
Hipertensão , Núcleo Hipotalâmico Paraventricular , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Receptores Acoplados a Proteínas G , Ácido Taurocólico , Animais , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Ratos , Hipertensão/tratamento farmacológico , Hipertensão/metabolismo , Masculino , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Pressão Sanguínea/efeitos dos fármacos , Anti-Hipertensivos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
9.
Cancer Med ; 13(7): e7125, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613182

RESUMO

BACKGROUND: Numerous studies have demonstrated that brain metastases patients may benefit from intracranial radiotherapy combined with immune checkpoint inhibitors (ICIs). However, it is unclear whether this treatment is effective for patients with small cell lung cancer brain metastases (SCLC-BMs). METHODS: We conducted a retrospective study by analyzing medical records of patients with SCLC-BMs from January 1, 2017 to June 1, 2022. Data related to median overall survival (mOS), median progression-free survival (mPFS), and intracranial progression-free survival (iPFS) were analyzed. RESULTS: A total of 109 patients were enrolled, of which 60 received WBRT and 49 received WBRT-ICI. Compared to the WBRT alone cohort, the WBRT-ICI cohort showed longer mOS (20.4 months vs. 29.3 months, p = 0.021), mPFS (7.9 months vs. 15.1 months, p < 0.001), and iPFS (8.3 months vs. 16.5 months, p < 0.001). Furthermore, WBRT-ICI cohort had a better response rate for both BMs. (p = 0.035) and extracranial diseases (p < 0.001) compared to those receiving WBRT alone. Notably, the use of WBRT before ICI was associated with longer mOS compared to the use of WBRT after ICI (23.3 months for the ICI-WBRT group vs. 34.8 months for the WBRT-ICI group, p = 0.020). CONCLUSION: Our results indicated that WBRT combined with immunotherapy improved survival in SCLC-BMs patients compared to WBRT monotherapy. Administering WBRT prior to ICI treatment is associated with improved survival outcomes compared to WBRT following ICI treatment, for patients with SCLC-BMs. These findings highlight the significance of conducting further prospective researches on combination strategies of intracranial radiotherapy and ICI in SCLC-BMs patients.


Assuntos
Neoplasias Encefálicas , Neoplasias Pulmonares , Carcinoma de Pequenas Células do Pulmão , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Neoplasias Pulmonares/terapia , Estudos Retrospectivos , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/radioterapia , Neoplasias Encefálicas/radioterapia , Encéfalo
10.
Toxicol Appl Pharmacol ; 486: 116946, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38679241

RESUMO

The pathogenesis of attention-deficit/hyperactivity disorder (ADHD) has not been fully elucidated. Gestational hypertension could double the probability of ADHD in the offspring, while the initial bacterial communication between the mother and offspring has been associated with psychiatric disorders. Thus, we hypothesize that antihypertensive treatment during pregnancy may abate the impairments in neurodevelopment of the offspring. To test this hypothesis, we chose Captopril and Labetalol, to apply to pregnant spontaneously hypertensive rat (SHR) dams and examined the outcomes in the male offspring. Our data demonstrated that maternal treatment with Captopril and Labetalol had long-lasting changes in gut microbiota and behavioral alterations, including decreased hyperactivity and increased curiosity, spatial learning and memory in the male offspring. Increased diversity and composition were identified, and some ADHD related bacteria were found to have the same change in the gut microbiota of both the dam and offspring after the treatments. LC-MS/MS and immunohistochemistry assays suggested elevated expression of brain derived neurotrophic factor (BDNF) and dopamine in the prefrontal cortex and striatum of offspring exposed to Captopril/ Labetalol, which may account for the improvement of the offspring's psychiatric functions. Therefore, our results support the beneficial long-term effects of the intervention of gestational hypertension in the prevention of ADHD.


Assuntos
Anti-Hipertensivos , Transtorno do Deficit de Atenção com Hiperatividade , Comportamento Animal , Captopril , Microbioma Gastrointestinal , Efeitos Tardios da Exposição Pré-Natal , Ratos Endogâmicos SHR , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Gravidez , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/induzido quimicamente , Feminino , Anti-Hipertensivos/farmacologia , Captopril/farmacologia , Masculino , Ratos , Comportamento Animal/efeitos dos fármacos , Labetalol/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipertensão Induzida pela Gravidez/induzido quimicamente , Dopamina/metabolismo
11.
Vaccine ; 42(9): 2122-2126, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38453621

RESUMO

COVID-19 booster dose vaccination has been crucial in ensuring protection against COVID-19 including recently predominant Omicron variants. Because vaccines against newer SARS-CoV- 2 variants are likely to be recommended in future, it will be valuable to understand past booster dose uptake among different demographic groups. Using U.S. vaccination data, this study examined intervals between primary series completion and receipt of first booster dose (monovalent or bivalent) during August 2021 - October 2022 among persons ≥12 years of age who had completed a COVID-19 vaccine primary series by October 2021. Sub-populations who were late booster recipients (received a booster dose ≥12 months after the primary series) or received no booster dose included persons <35 years old, Johnson & Johnson/Janssen vaccine primary dose recipients, persons in certain racial and ethnic groups, and persons living in rural and more socially vulnerable areas, and in the South region of the United States; these groups may benefit the most from public health outreach efforts to achieve timely COVID-19 vaccination completion in future.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Estados Unidos , Criança , Adulto , COVID-19/prevenção & controle , SARS-CoV-2 , Etnicidade
12.
Food Chem ; 447: 138867, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-38447237

RESUMO

Fluoroquinolones (FQs) are a category of broadly used antibiotics. Development of an effective and sensitive approach for determination of trace FQs in environmental and food samples is still challenging. Herein, the hydroxyl-containing triazine-based conjugated microporous polymers (CMPs-OH) was constructed and served as SPE absorbent for the efficient enrichment of FQs. Based on DFT simulations, the excellent enrichment capacity between CMPs-OH and FQs was contributed by hydrogen bonding and π-π interactions. In combination with high-performance liquid chromatography-tandem mass spectrometry, the proposed approach exhibited a wide linear range (0.2-400 ng L-1), low detection limits (0.05-0.15 ng L-1), and good intraday and interday precisions under optimal conditions. In addition, the established method was effectively utilized for the determination of FQs in fourteen samples with recoveries between 82.6 % and 109.2 %. This work provided a feasible sample pretreatment method for monitoring FQs in environmental and food matrices.


Assuntos
Polímeros , Poluentes Químicos da Água , Polímeros/química , Poluentes Químicos da Água/análise , Fluoroquinolonas/análise , Antibacterianos/análise , Cromatografia Líquida de Alta Pressão , Extração em Fase Sólida/métodos
13.
Artigo em Inglês | MEDLINE | ID: mdl-38498745

RESUMO

The utilization of deep learning techniques for decoding visual perception images from brain activity recorded by functional magnetic resonance imaging (fMRI) has garnered considerable attention in recent research. However, reconstructed images from previous studies still suffer from low quality or unreliability. Moreover, the complexity inherent to fMRI data, characterized by high dimensionality and low signal-to-noise ratio, poses significant challenges in extracting meaningful visual information for perceptual reconstruction. In this regard, we proposes a novel neural decoding model, named the hierarchical semantic generative adversarial network (HS-GAN), inspired by the hierarchical encoding of the visual cortex and the homology theory of convolutional neural networks (CNNs), which is capable of reconstructing perceptual images from fMRI data by leveraging the hierarchical and semantic representations. The experimental results demonstrate that HS-GAN achieved the best performance on Horikawa2017 dataset (histogram similarity: 0.447, SSIM-Acc: 78.9%, Peceptual-Acc: 95.38%, AlexNet(2): 96.24% and AlexNet(5): 94.82%) over existing advanced methods, indicating improved naturalness and fidelity of the reconstructed image. The versatility of the HS-GAN was also highlighted, as it demonstrated promising generalization capabilities in reconstructing handwritten digits, achieving the highest SSIM (0.783±0.038), thus extending its application beyond training solely on natural images.


Assuntos
Processamento de Imagem Assistida por Computador , Semântica , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Encéfalo
14.
Fitoterapia ; 175: 105924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537886

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease, and accumulating evidence suggested that proteostatic imbalance is a key feature of the disease. Traditional Chinese medicine exhibits a multi-target therapeutic effect, making it highly suitable for addressing protein homeostasis imbalance in AD. Dendrobium officinale is a traditional Chinese herbs commonly used as tonic agent in China. In this study, we investigated protection effects of D. officinale phenolic extract (SH-F) and examined its underlying mechanisms by using transgenic Caenorhabditis elegans models. We found that treatment with SH-F (50 µg/mL) alleviated Aß and tau protein toxicity in worms, and also reduced aggregation of polyglutamine proteins to help maintain proteostasis. RNA sequencing results showed that SH-F treatment significantly affected the proteolytic process and autophagy-lysosomal pathway. Furthermore, we confirmed that SH-F showing maintainance of proteostasis was dependent on bec-1 by qRT-PCR analysis and RNAi methods. Finally, we identified active components of SH-F by LC-MS method, and found the five major compounds including koaburaside, tyramine dihydroferulate, N-p-trans-coumaroyltyramine, naringenin and isolariciresinol are the main bioactive components responsible for the anti-AD activity of SH-F. Our findings provide new insights to develop a treatment strategy for AD by targeting proteostasis, and SH-F could be an alternative drug for the treatment of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Autofagia , Caenorhabditis elegans , Dendrobium , Modelos Animais de Doenças , Extratos Vegetais , Proteostase , Animais , Caenorhabditis elegans/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Dendrobium/química , Proteostase/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Extratos Vegetais/farmacologia , Animais Geneticamente Modificados , Proteínas tau/metabolismo , Fenóis/farmacologia , Fenóis/isolamento & purificação , Flavanonas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
15.
Int Immunopharmacol ; 130: 111705, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38412673

RESUMO

OBJECTIVE: To evaluate the therapeutic advantage of G-CSF to whole brain radiotherapy (WBRT) in combination with immunotherapy as a first-line treatment for non-small cell lung cancer (NSCLC) brain metastases (BMs). METHODS: In this retrospective study, 117 patients (37 in G-CSF group and 80 in no G-CSF group) who underwent first-line WBRT combined with immunotherapy were enrolled. Their survival, intracranial response, BM-related symptoms and toxicity were evaluated. RESULTS: The overall survival (OS) of patients in G-CSF group was significantly improved compared to patients no G-CSF group (median time: 14.8 vs 10.2 months; HR: 0.61, 95 % CI: 0.38-0.97, p = 0.035). However, there were no significant differences in intracranial responses between the two groups (p > 0.05). The G-CSF group exhibited a significantly higher rate of relief from BM-related symptoms compared to the no G-CSF group (91.7 % vs 59.5 %, p = 0.037). Cox proportional hazards regression analyses indicated that after-treatment ALC > 0.9 × 10^9/L (HR 0.57, 95 % CI 0.32-0.99, p = 0.046) and Hb > 110 g/dL (HR 0.41, 95 % CI 0.24-0.71, p = 0.001) were significant potential factors associated with extended OS. The addition of G-CSF was well tolerated and effectively reduced the incidence of neutropenia (0 % vs 5.0 %, p = 0.17). CONCLUSION: Integrating G-CSF with WBRT and immunotherapy as a first-line treatment for NSCLC-BMs has exhibited significant efficacy and favorable tolerability.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamento farmacológico , Estudos Retrospectivos , Fator Estimulador de Colônias de Granulócitos , Resultado do Tratamento , Irradiação Craniana , Prognóstico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/tratamento farmacológico , Encéfalo/patologia , Imunoterapia
16.
Cell Death Dis ; 15(2): 154, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378757

RESUMO

Intestinal ischemia/reperfusion (I/R) injury is a typical pathological course in the clinic with a high morbidity rate. Recent research has pointed out the critical role of ubiquitination during the occurrence and development of intestinal I/R by precisely mediating protein quality control and function. Here, we conducted an integrated multiomic analysis to identify critical ubiquitination-associated molecules in intestinal I/R and identified endoplasmic reticulum-located HRD1 as a candidate molecule. During intestinal I/R, excessive ER stress plays a central role by causing apoptotic pathway activation. In particular, we found that ER stress-mediated apoptosis was mitigated by HRD1 knockdown in intestinal I/R mice. Mechanistically, TMEM2 was identified as a new substrate of HRD1 in intestinal I/R by mass spectrometry analysis, which has a crucial role in attenuating apoptosis and promoting non-canonical ER stress resistance. A strong negative correlation was found between the protein levels of HRD1 and TMEM2 in human intestinal ischemia samples. Specifically, HRD1 interacted with the lysine 42 residue of TMEM2 and reduced its stabilization by K48-linked polyubiquitination. Furthermore, KEGG pathway analysis revealed that TMEM2 regulated ER stress-mediated apoptosis in association with the PI3k/Akt signaling pathway rather than canonical ER stress pathways. In summary, HRD1 regulates ER stress-mediated apoptosis through a non-canonical pathway by ubiquitinating TMEM2 and inhibiting PI3k/Akt activation during intestinal I/R. The current study shows that HRD1 is an intestinal I/R critical regulator and that targeting the HRD1/TMEM2 axis may be a promising therapeutic approach.


Assuntos
Estresse do Retículo Endoplasmático , Ubiquitina-Proteína Ligases , Animais , Humanos , Camundongos , Apoptose , Estresse do Retículo Endoplasmático/fisiologia , Isquemia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Reperfusão , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
17.
Int J Mol Sci ; 25(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38203794

RESUMO

Stabilization of a G-quadruplex (G4) in the promotor of the c-MYC proto-oncogene leads to inhibition of gene expression, and it thus represents a potentially attractive new strategy for cancer treatment. However, most G4 stabilizers show little selectivity among the many G4s present in the cellular complement of DNA and RNA. Intriguingly, a crescent-shaped cell-penetrating thiazole peptide, TH3, preferentially stabilizes the c-MYC G4 over other promotor G4s, but the mechanisms leading to this selective binding remain obscure. To investigate these mechanisms at the atomic level, we performed an in silico comparative investigation of the binding of TH3 and its analogue TH1 to the G4s from the promotors of c-MYC, c-KIT1, c-KIT2, and BCL2. Molecular docking and molecular dynamics simulations, combined with in-depth analyses of non-covalent interactions and bulk and per-nucleotide binding free energies, revealed that both TH3 and TH1 can induce the formation of a sandwich-like framework through stacking with both the top and bottom G-tetrads of the c-MYC G4 and the adjacent terminal capping nucleotides. This framework produces enhanced binding affinities for c-MYC G4 relative to other promotor G4s, with TH3 exhibiting an outstanding binding priority. Van der Waals interactions were identified to be the key factor in complex formation in all cases. Collectively, our findings fully agree with available experimental data. Therefore, the identified mechanisms leading to specific binding of TH3 towards c-MYC G4 provide valuable information to guide the development of new selective G4 stabilizers.


Assuntos
Genes myc , Simulação de Acoplamento Molecular , Peptídeos/farmacologia , Tiazóis/farmacologia
18.
Cell Death Dis ; 15(1): 4, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177100

RESUMO

Effective therapeutics is much needed for amyotrophic lateral sclerosis (ALS), an adult-onset neurodegenerative disease mainly affecting motor neurons. By screening chemical compounds in human patient-derived and aging-relevant motor neurons, we identify a neuroprotective compound and show that MAP4Ks may serve as therapeutic targets for treating ALS. The lead compound broadly improves survival and function of motor neurons directly converted from human ALS patients. Mechanistically, it works as an inhibitor of MAP4Ks, regulates the MAP4Ks-HDAC6-TUBA4A-RANGAP1 pathway, and normalizes subcellular distribution of RANGAP1 and TDP-43. Finally, in an ALS mouse model we show that inhibiting MAP4Ks preserves motor neurons and significantly extends animal lifespan.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Camundongos , Animais , Adulto , Humanos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Doenças Neurodegenerativas/metabolismo , Neurônios Motores/metabolismo , Envelhecimento , Modelos Animais de Doenças , Camundongos Transgênicos
19.
Sci Total Environ ; 917: 170319, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278241

RESUMO

Regional transport of air pollutants is a crucial factor influencing atmospheric environment, and aerosol radiative forcing (ARF) feedback to atmospheric boundary layer (ABL) structure and ambient air pollution is yet to be comprehensively understood over the receptor region of regional transport. By simulating meteorology and air pollutants during a heavy PM2.5 pollution event with WRF-Chem model, we quantitatively investigated the ARF and ABL interaction for PM2.5 pollution over the Twain-Hu Basin (THB), a key receptor region of regional transport over central China. Driven by northerly winds, PM2.5 was transported from upstream north China to downstream THB accompanied by high PM2.5 levels in the free troposphere. The ARF exacerbated local PM2.5 accumulation by up to 20 µg m-3 and inhibited the impact of regional transport on PM2.5 levels in the ABL with reducing near-surface PM2.5 concentrations of 5 µg m-3 over the THB. The ARF-intensified air temperature inversion at the top of ABL was unfavorable for the transported air pollutants crossing the ABL top to the near-surface layer, thus weakening the impact of regional PM2.5 transport on air quality in the receptor region. Meanwhile, the ARF of transported PM2.5 induced updrafts in the free troposphere, promoting vertical mixing of air pollutants with positive feedback on increasing secondary PM2.5 concentrations in the free troposphere. The ARF induced more and less secondary PM2.5 formations respectively in the free troposphere and the near-surface layer during the regional transport period of air pollution. These results enhance our comprehension of aerosol-meteorology feedback in regional changes of atmospheric environment with inverse effects of ARF on PM2.5 pollution of local accumulation and regional transport.

20.
Prev Med ; 179: 107852, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211802

RESUMO

The simultaneous circulation of seasonal influenza virus and SARS-CoV-2 variants will likely pose unique challenges to public health during the future influenza seasons. Persons who are undergoing treatment in healthcare facilities may be particularly at risk. It is important for healthcare personnel to protect themselves and patients by receiving vaccines. The purpose of this study is to assess coverage of the seasonal influenza vaccine and COVID-19 monovalent booster among healthcare personnel working at acute care hospitals in the United States during the 2021-22 influenza season and to examine the demographic and facility characteristics associated with coverage. A total of 3260 acute care hospitals with over 7 million healthcare personnel reported vaccination data to National Healthcare Safety Network (NHSN) during the 2021-22 influenza season. Two separate negative binomial mixed models were developed to explore the factors associated with seasonal influenza coverage and COVID-19 monovalent booster coverage. At the end of the 2021-2022 influenza season, the overall pooled mean seasonal influenza coverage was 80.3%, and the pooled mean COVID-19 booster coverage was 39.5%. Several demographic and facility-level factors, such as employee type, facility ownership, and geographic region, were significantly associated with vaccination against influenza and COVID-19 among healthcare personnel working in acute care hospitals. Our findings highlight the need to increase the uptake of vaccination among healthcare personnel, particularly non-employees, those working in for-profit and non-medical school-affiliated facilities, and those residing in the South.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Humanos , Estados Unidos , Influenza Humana/prevenção & controle , Estações do Ano , Cobertura Vacinal , COVID-19/prevenção & controle , SARS-CoV-2 , Pessoal de Saúde , Vacinação , Hospitais , Atenção à Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...