Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905013

RESUMO

This paper reports on a compact and lightweight sensor for analysis of gases/vapors by means of a MEMS-based pre-concentrator coupled to a miniaturized infrared absorption spectroscopy (IRAS) module. The pre-concentrator was utilized to sample and trap vapors in a MEMS cartridge filled with sorbent material and to release them once concentrated by fast thermal desorption. It was also equipped with a photoionization detector for in-line detection and monitoring of the sampled concentration. The vapors released by the MEMS pre-concentrator are injected into a hollow fiber, which acts as the analysis cell of the IRAS module. The miniaturized internal volume of the hollow fiber of about 20 microliters keeps the vapors concentrated for analysis, thus allowing measurement of their infrared absorption spectrum with a signal to noise ratio high enough to identify the molecule, despite the short optical path, starting from sampled concentration in air down to parts per million. Results obtained for ammonia, sulfur hexafluoride, ethanol and isopropanol are reported to illustrate the sensor detection and identification capability. A limit of identification (LoI) of about 10 parts per million was validated in the lab for ammonia. The lightweight and low power consumption design of the sensor allowed operation onboard unmanned aerial vehicles (UAVs). The first prototype was developed within the EU Horizon 2020 project ROCSAFE for the remote assessment and forensic examination of a scene in the aftermath of industrial or terroristic accidents.

2.
Sensors (Basel) ; 22(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36236300

RESUMO

Starting from Quartz-Enhanced Photo-Acoustic Spectroscopy (QEPAS), we have explored the potential of a tightly linked method of gas/vapor sensing, from now on referred to as Tuning-Fork-Enhanced Photo-Acoustic Spectroscopy (TFEPAS). TFEPAS utilizes a non-piezoelectric metal or dielectric tuning fork to transduce the photoacoustic excitation and an optical interferometric readout to measure the amplitude of the tuning fork vibration. In particular, we have devised a solution based on Additive Manufacturing (AM) for the Absorption Detection Module (ADM). The novelty of our solution is that the ADM is entirely built monolithically by Micro-Metal Laser Sintering (MMLS) or other AM techniques to achieve easier and more cost-effective customization, extreme miniaturization of internal volumes, automatic alignment of the tuning fork with the acoustic micro-resonators, and operation at high temperature. This paper reports on preliminary experimental results achieved with ammonia at parts-per-million concentration in nitrogen to demonstrate the feasibility of the proposed solution. Prospectively, the proposed TFEPAS solution appears particularly suited for hyphenation to micro-Gas Chromatography and for the analysis of complex solid and liquid traces samples, including compounds with low volatility such as illicit drugs, explosives, and persistent chemical warfare agents.


Assuntos
Substâncias para a Guerra Química , Drogas Ilícitas , Acústica , Amônia , Nitrogênio , Quartzo/química , Análise Espectral/métodos
3.
Sensors (Basel) ; 23(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36616868

RESUMO

This paper reports on a compact, portable, and selective chemical sensor for hazardous vapors at trace levels, which is under development and validation within the EU project H2020 "RISEN". Starting from the prototype developed for a previous EU project, here, we implemented an updated two-stage purge and trap vapor pre-concentration system, a more compact MEMS- based fast gas-chromatographic separation module (Compact-GC), a new miniaturized quartz-enhanced photoacoustic spectroscopy (QEPAS) detector, and a new compact laser source. The system provides two-dimensional selectivity combining GC retention time and QEPAS spectral information and was specifically designed to be rugged, portable, suitable for on-site analysis of a crime scene, with accurate response in few minutes and in the presence of strong chemical background. The main upgrades of the sensor components and functional modules will be presented in detail, and test results with VOCs, simulants of hazardous chemical agents, and drug precursors will be reported and discussed.


Assuntos
Gases , Quartzo , Quartzo/química , Gases/análise , Análise Espectral/métodos
4.
Sensors (Basel) ; 20(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878138

RESUMO

This paper reports on a portable selective chemical sensor for hazardous vapors at trace levels, which combines a two-stage purge and trap vapor pre-concentration system, a Micro-Electro-Mechanical-System (MEMS) based fast gas-chromatographic (FAST-GC) separation column and a miniaturized quartz-enhanced photoacoustic spectroscopy (QEPAS) detector. The integrated sensing system provides two-dimensional selectivity combining GC retention time and QEPAS spectral information, and was specifically designed to be rugged and suitable to be deployed on unmanned robotic ground vehicles. This is the first demonstration of a miniaturized QEPAS device used as spectroscopic detector downstream of a FAST-GC separation column, enabling real-world analyses in dirty environments with response time of a few minutes. The main modules of the GC/QEPAS sensor device will be described in detail together with the system integration, and successful test results will be reported and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...