Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(30): 45261-45275, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35143002

RESUMO

Agrochemicals including neonicotinoid insecticides and fungicides are frequently applied as seed treatments on corn, soybeans, and other common row crops. Crops grown from pesticide-treated seed are often directly planted in managed floodplain wetlands and used as a soil disturbance or food resource for wildlife. We quantified invertebrate communities within mid-latitude floodplain wetlands and assessed their response to use of pesticide-treated seeds within the floodplain. We collected and tested aqueous and sediment samples for pesticides in addition to sampling aquatic invertebrates from 22 paired wetlands. Samples were collected twice in 2016 (spring [pre-water level drawdown] and autumn [post-water level flood-up]) followed by a third sampling period (spring 2017). Meanwhile, during the summer of 2016, a portion of study wetlands were planted with either pesticide-treated or untreated corn seed. Neonicotinoid toxic equivalencies (NI-EQs) for sediment (X̅ = 0.58 µg/kg), water (X̅ = 0.02 µg/L), and sediment fungicide concentrations (X̅ = 0.10 µg/kg) were used to assess potential effects on wetland invertebrates. An overall decrease in aquatic insect richness and abundance was associated with greater NI-EQs in wetland water and sediments, as well as with sediment fungicide concentration. Post-treatment, treated wetlands displayed a decrease in insect taxa-richness and abundance before recovering by the spring of 2017. Information on timing and magnitude of aquatic insect declines will be useful when considering the use of seed treatments for wildlife management. More broadly, this study brings attention to how agriculture is used in wetland management and conservation planning.


Assuntos
Fungicidas Industriais , Inseticidas , Praguicidas , Poluentes Químicos da Água , Animais , Fungicidas Industriais/análise , Insetos , Inseticidas/análise , Invertebrados , Neonicotinoides/análise , Praguicidas/farmacologia , Água , Poluentes Químicos da Água/análise , Áreas Alagadas
2.
Sci Total Environ ; 786: 147299, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-33971605

RESUMO

Wild bees support global agroecosystems via pollination of agricultural crops and maintaining diverse plant communities. However, with an increased reliance on pesticides to enhance crop production, wild bee communities may inadvertently be affected through exposure to chemical residues. Laboratory and semi-field studies have demonstrated lethal and sublethal effects of neonicotinoids on limited genera (e.g., Apis, Bombus, Megachile), yet full field studies evaluating impacts to wild bee communities remain limited. Here, we conducted a two-year field study to assess whether neonicotinoid seed treatment and presence in environmental media (e.g., soil, flowers) influenced bee nest and diet guild abundance and richness. In 2017 and 2018, we planted 23 Missouri agricultural fields to soybeans (Glycine max) using one of three seed treatments: untreated (no insecticide), treated (imidacloprid), or previously-treated (untreated, but neonicotinoid use prior to 2017). During both years, wild bees were collected in study field margins monthly (May to September) in tandem with soil and flowers from fields and field margins that were analyzed for neonicotinoid residues. Insecticide presence in soils and flowers varied over the study with neonicotinoids infrequently detected in both years within margin flowers (0%), soybean flowers (<1%), margin soils (<8%), and field soils (~39%). Wild bee abundance and species richness were not significantly different among field treatments. In contrast, neonicotinoid presence in field soils was associated with significantly lower richness (ground- and aboveground-nesting, diet generalists) of wild bee guilds. Our findings support that soil remains an underexplored route of exposure and long-term persistence of neonicotinoids in field soils may lead to reduced diversity in regional bee communities. Future reduction or elimination of neonicotinoid seed treatment use on areas managed for wildlife may facilitate conservation goals to sustain viable, diverse wild bee populations.


Assuntos
Inseticidas , Polinização , Animais , Abelhas , Inseticidas/análise , Inseticidas/toxicidade , Missouri , Neonicotinoides/toxicidade , Sementes/química
3.
J Environ Qual ; 50(1): 241-251, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33169408

RESUMO

Neonicotinoid pesticides can persist in soils for extended time periods; however, they also have a high potential to contaminate ground and surface waters. Studies have reported negative effects associated with neonicotinoids and nontarget taxa, including aquatic invertebrates, pollinating insect species, and insectivorous birds. This study evaluated factors associated with clothianidin (CTN) degradation and sorption in Missouri wetland soils to assess the potential for wetland soils to mitigate potential environmental risks associated with neonicotinoids. Solid-to-solution partition coefficients (Kd ) for CTN sorption to eight wetland soils were determined via single-point sorption experiments, and sorption isotherm experiments were conducted using the two most contrasting soils. Clothianidin degradation was determined under oxic and anoxic conditions over 60 d. Degradation data were fit to zero- and first-order kinetic decay models to determine CTN half-life (t0.5 ). Sorption results indicated CTN sorption to wetland soil was relatively weak (average Kd , 3.58 L kg-1 ); thus, CTN has the potential to be mobile and bioavailable within wetland soils. However, incubation results showed anoxic conditions significantly increased CTN degradation rates in wetland soils (anoxic average t0.5 , 27.2 d; oxic average t0.5 , 149.1 d). A significant negative correlation was observed between anoxic half-life values and soil organic C content (r2  = .782; p = .046). Greater CTN degradation rates in wetland soils under anoxic conditions suggest that managing wetlands to facilitate anoxic conditions could mitigate CTN presence in the environment and reduce exposure to nontarget organisms.


Assuntos
Poluentes do Solo , Solo , Adsorção , Guanidinas , Missouri , Neonicotinoides , Tiazóis , Áreas Alagadas
4.
Sci Total Environ ; 742: 140436, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-32623160

RESUMO

Pesticide exposure is a growing global concern for pollinator conservation. While most current pesticide studies have specifically focused on the impacts of neonicotinoid insecticides toward honeybees and some native bee species, wild pollinators may be exposed to a broader range of agrochemicals. In 2016 and 2017 we collected a total of 637 wild bees and butterflies from the margins of cultivated agricultural fields situated on five Conservation Areas in mid-northern Missouri. Pollinators were composited by individual genera (90 samples) and whole tissues were then analyzed for the presence of 168 pesticides and degradation products. At least one pesticide was detected (% frequency) in the following wild bee genera: Bombus (96%), Eucera (75%), Melissodes (73%), Ptilothrix (50%), Xylocopa (50%), and Megachile (17%). Similarly, at least one pesticide was detected in the following lepidopteran genera: Hemaris (100%), Hylephila (75%), Danaus (60%), and Colias (50%). Active ingredients detected in >2% of overall pollinator samples were as follows: metolachlor (24%), tebuconazole (22%), atrazine (18%), imidacloprid desnitro (13%), bifenthrin (9%), flumetralin (9%), p, p'-DDD (6%), tebupirimfos (4%), fludioxonil (4%), flutriafol (3%), cyproconazole (2%), and oxadiazon (2%). Concentrations of individual pesticides ranged from 2 to 174 ng/g. Results of this pilot field study indicate that wild pollinators are exposed to and are potentially bioaccumulating a wide variety of pesticides in addition to neonicotinoids. Here, we provide evidence that wild bee and butterfly genera may face exposure to a wide range of insecticides, fungicides, and herbicides despite being collected from areas managed for conservation. Therefore, even with the presence of extensive habitat, minimal agricultural activity on Conservation Areas may expose pollinators to a range of pesticides.


Assuntos
Fungicidas Industriais/análise , Inseticidas/análise , Praguicidas/análise , Animais , Abelhas , Missouri , Neonicotinoides , Nitrocompostos
5.
Environ Sci Technol ; 53(18): 10591-10600, 2019 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-31412695

RESUMO

Widespread use of neonicotinoid insecticides in North America has led to frequent detection of neonicotinoids in surface waters. Despite frequent surface water detection, few studies have evaluated underlying sediments for the presence of neonicotinoids. Thus, we sampled water and sediments for neonicotinoids during a one-year period at 40 floodplain wetlands throughout Missouri. Analyzed for six common neonicotinoids, sediment samples consistently (63% of samples) contained neonicotinoids (e.g., imidacloprid and clothianidin) in all sampling periods. Mean sediment and aqueous neonicotinoid concentrations were 1.19 µg kg-1 (range: 0-17.99 µg kg-1) and 0.03 µg L-1 (0-0.97 µg L-1), respectively. We used boosted regression tree analysis to explain sediment neonicotinoid concentrations and ultimately identified six variables that accounted for 31.6% of concentration variability. Efforts to limit sediment neonicotinoid contamination could include reducing agriculture within a wetland below a threshold of 25% area planted. Also, prolonging periods of overlying water >25 cm deep when water temperatures reach/exceed 18 °C could promote conditions favorable for neonicotinoid degradation. Results of this study can be useful in determining potential routes and levels of neonicotinoid exposure experienced by nontarget benthic aquatic invertebrates as well as potential means to mitigate neonicotinoid concentrations in floodplain wetlands.


Assuntos
Inseticidas , Poluentes Químicos da Água , Animais , Missouri , Neonicotinoides , Nitrocompostos , América do Norte , Áreas Alagadas
6.
R Soc Open Sci ; 5(5): 171664, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29892364

RESUMO

Palustrine wetland management across the USA is often conducted under a moist soil management framework aimed at providing energetic resources for non-breeding waterfowl. Moist soil management techniques typically include seasonal water-level manipulations and mechanical soil disturbance to create conditions conducive to germination and growth of early successional, seed-producing wetland plants. The assumption is that providing stopover and wintering habitat for non-breeding waterfowl will also accommodate life-history needs of a broader suite of migratory waterbirds including shorebirds, wading birds and marsh birds. Although studies of wetlands provide some evidence to support this assumption for shorebirds and wading birds, there is less information on how other marshbirds respond. Sora (Porzana carolina) are a species of migratory rail that depend on wetlands year round as they migrate across North America. It is a species for which the consequences of wetland management decisions directed towards non-breeding waterfowl are unknown. We conducted nocturnal surveys on 10 public properties in Missouri, USA during autumn migration during 2012-2016 to examine sora habitat use in wetland impoundments managed to enhance the production of moist soil vegetation. We found a positive relationship with sora presence and mean water depth and annual moist soil vegetation; sora used, on average, deeper water than was available across surveyed impoundments and used locations with a higher percentage of annual moist soil vegetation than was available. We found a negative relationship with sora use and upland vegetation, woody vegetation and open water. We found sora using deeper water than have previously been reported for autumn migration, and that moist soil management techniques used on Missouri's intensively managed public wetland areas may be compatible with sora autumn migration stopover habitat requirements.

7.
Ecol Appl ; 28(5): 1232-1244, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603486

RESUMO

Neonicotinoid insecticides are currently the fastest-growing and most widely used insecticide class worldwide. Valued for their versatility in application, these insecticides may cause deleterious effects in a range of non-target (beneficial) arthropods. However, it remains unclear whether strong patterns exist in terms of their major effects, if broad measures of arthropod performance are negatively affected, or whether different functional groups are equally vulnerable. Here, we present a meta-analysis of 372 observations from 44 field and laboratory studies that describe neonicotinoid effects on 14 arthropod orders across five broad performance measures: abundance, behavior, condition, reproductive success, and survival. Across studies, neonicotinoids negatively affected all performance metrics evaluated; however, magnitude of the effects varied. Arthropod behavior and survival were the most negatively affected and abundance was the least negatively affected. Effects on arthropod functional groups were inconsistent. Pollinator condition, reproductive success, and survival were significantly lower in neonicotinoid treatments compared to untreated controls; whereas, neonicotinoid effects on detritivores were not significant. Although magnitude of arthropod response to neonicotinoids varied among performance measures and functional groups, we documented a consistent negative relationship between exposure to neonicotinoid insecticides in published studies and beneficial arthropod performance.


Assuntos
Artrópodes/efeitos dos fármacos , Inseticidas/efeitos adversos , Neonicotinoides/efeitos adversos , Animais , Artrópodes/fisiologia , Polinização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...