Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38683636

RESUMO

Dimensional confinement has shown to be an effective strategy to tune competing degrees of freedom in complex oxides. Here, we achieved atomic layered growth of trigonal vanadium sesquioxide (V2O3) by means of oxygen-assisted molecular beam epitaxy. This led to a series of high-quality epitaxial ultrathin V2O3 films down to unit cell thickness, enabling the study of the intrinsic electron correlations upon confinement. By electrical and optical measurements, we demonstrate a dimensional confinement-induced metal-insulator transition in these ultrathin films. We shed light on the Mott-Hubbard nature of this transition, revealing a vanishing quasiparticle weight as demonstrated by photoemission spectroscopy. Furthermore, we prove that dimensional confinement acts as an effective out-of-plane stress. This highlights the structural component of correlated oxides in a confined architecture, while opening an avenue to control both in-plane and out-of-plane lattice components by epitaxial strain and confinement, respectively.

2.
Nat Commun ; 13(1): 3730, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764628

RESUMO

Mott transitions in real materials are first order and almost always associated with lattice distortions, both features promoting the emergence of nanotextured phases. This nanoscale self-organization creates spatially inhomogeneous regions, which can host and protect transient non-thermal electronic and lattice states triggered by light excitation. Here, we combine time-resolved X-ray microscopy with a Landau-Ginzburg functional approach for calculating the strain and electronic real-space configurations. We investigate V2O3, the archetypal Mott insulator in which nanoscale self-organization already exists in the low-temperature monoclinic phase and strongly affects the transition towards the high-temperature corundum metallic phase. Our joint experimental-theoretical approach uncovers a remarkable out-of-equilibrium phenomenon: the photo-induced stabilisation of the long sought monoclinic metal phase, which is absent at equilibrium and in homogeneous materials, but emerges as a metastable state solely when light excitation is combined with the underlying nanotexture of the monoclinic lattice.

3.
Adv Mater ; 34(32): e2201248, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35404522

RESUMO

Quantum effects in novel functional materials and new device concepts represent a potential breakthrough for the development of new information processing technologies based on quantum phenomena. Among the emerging technologies, memristive elements that exhibit resistive switching, which relies on the electrochemical formation/rupture of conductive nanofilaments, exhibit quantum conductance effects at room temperature. Despite the underlying resistive switching mechanism having been exploited for the realization of next-generation memories and neuromorphic computing architectures, the potentialities of quantum effects in memristive devices are still rather unexplored. Here, a comprehensive review on memristive quantum devices, where quantum conductance effects can be observed by coupling ionics with electronics, is presented. Fundamental electrochemical and physicochemical phenomena underlying device functionalities are introduced, together with fundamentals of electronic ballistic conduction transport in nanofilaments. Quantum conductance effects including quantum mode splitting, stability, and random telegraph noise are analyzed, reporting experimental techniques and challenges of nanoscale metrology for the characterization of memristive phenomena. Finally, potential applications and future perspectives are envisioned, discussing how memristive devices with controllable atomic-sized conductive filaments can represent not only suitable platforms for the investigation of quantum phenomena but also promising building blocks for the realization of integrated quantum systems working in air at room temperature.

4.
Sci Rep ; 9(1): 12344, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31462677

RESUMO

A new way to simultaneously grow carbon nanotubes (CNTs) and ultrathin graphite on copper (Cu) foils has been investigated. This one-step growth process yields three-dimensional networks of CNTs on graphitic layers (3D CNTs/G) on Cu foils. Their synthesis conditions and growth mechanism are discussed in detail taking their structural properties into account. Individual CNTs and the 3D CNTs/G networks by means of an in-situ conductive atomic force microscope inside a scanning electron microscope are electrically characterized. Time-resolved photoluminescence demonstrated fast charge transfer and high carrier collection efficiency superior to two-dimensional ultrathin graphite only. Their facile and tunable growth and excellent electrical properties show that the 3D CNTs/G are strongly attractive for various applications such as solar cells, sensors, supercapacitors, photovoltaics, power generation, and optoelectronics.

5.
J Phys Condens Matter ; 31(15): 155301, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30658346

RESUMO

Magnetic nanoparticles embedded oxide semiconductors are interesting candidates for spintronics in view of combining ferromagnetic (FM) and semiconducting properties. In this work, Co-ZnO and Co-V2O3 nanocomposite thin films are synthesized by Co ion implantation in crystalline thin films. Magnetic orders vary with the implantation fluence in Co-ZnO, where superparamagnetic (SPM) order appears in the low-fluence films (2 × 1016 and 4 × 1016 ions cm-2) and FM order co-exists with the SPM phase in high-fluence films (1 × 1017 ions cm-2). Exchange bias (EB) appears in the high-fluence films, with an EB field of about 100 Oe at 2 K and a blocking temperature of around 100 K. On the other hand, Co-V2O3 thin films with an implantation fluence of 3.5 × 1016 ions cm-2 exhibit a clear antiferromagnetic (AFM) coupling at low temperatures without the EB effect. The different magnetic behavior of the Co-implanted films with different Co content leads us to conclude that the observed EB effect in the Co-ZnO films results from the FM/AFM coupling between sizable Co nanoparticles and their CoO/Co3O4 surroundings in the (Zn,Co)O matrix. On the other hand, the absence of EB effect in Co-V2O3 appears to be due to the small size of the FM Co nanoparticles in spite of an AFM magnetic order. Detailed studies of magnetic orders and EB effect in magnetic nanocomposite semiconductors can pave the way for their application in spintronics.

6.
Opt Lett ; 43(15): 3650-3653, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067646

RESUMO

A tunable transverse electric (TE) pass polarizer is demonstrated based on hybrid vanadium dioxide/silicon (VO2/Si) technology. The 20-µm-long TE pass polarizer exploits the phase transition of the active VO2 material to control the rejection of the unwanted transverse magnetic (TM) polarization. The device features insertion losses below 1 dB at static conditions and insertion losses of 5.5 dB and an attenuation of TM polarization of 19 dB in the active state for a wavelength range between 1540 nm and 1570 nm. To the best of our knowledge, this is the first time that tunable polarizers compatible with Si photonics are demonstrated.

7.
Opt Express ; 26(10): 12387-12395, 2018 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-29801273

RESUMO

The performance of optical devices relying in vanadium dioxide (VO2) technology compatible with the silicon platform depends on the polarization of light and VO2 properties. In this work, optical switching in hybrid VO2/Si waveguides thermally triggered by lateral microheaters is achieved with insertion losses below 1 dB and extinction ratios above 20 dB in a broad bandwidth larger than 30 nm. The optical switching response has been optimized for TE and TM polarizations by using a homogeneous and a granular VO2 layer, respectively, with a small impact on the electrical power consumption. The stability and reversibility between switching states showing the possibility of bistable performance is also demonstrated.

8.
Phys Rev Lett ; 102(11): 117001, 2009 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-19392228

RESUMO

We demonstrate the existence of a novel superconducting state in high quality two-component MgB2 single crystalline superconductors where a unique combination of both type-1 (lambda{1}/xi{1}<1/sqrt[2]) and type-2 (lambda{2}/xi{2}>1/sqrt[2]) superconductor conditions is realized for the two components of the order parameter. This condition leads to a vortex-vortex interaction attractive at long distances and repulsive at short distances, which stabilizes unconventional stripe- and gossamerlike vortex patterns that we have visualized in this type-1.5 superconductor using Bitter decoration and also reproduced in numerical simulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...