Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 89(10): e0055923, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37787538

RESUMO

Neomycin is the first-choice antibiotic for the treatment of porcine enteritis caused by enterotoxigenic Escherichia coli. Resistance to this aminoglycoside is on the rise after the increased use of neomycin due to the ban on zinc oxide. We identified the neomycin resistance determinants and plasmid contents in a historical collection of 128 neomycin-resistant clinical E. coli isolates from Danish pig farms. All isolates were characterized by whole-genome sequencing and antimicrobial susceptibility testing, followed by conjugation experiments and long-read sequencing of eight selected representative strains. We detected 35 sequence types (STs) with ST100 being the most prevalent lineage (38.3%). Neomycin resistance was associated with two resistance genes, namely aph(3')-Ia and aph(3')-Ib, which were identified in 93% and 7% of the isolates, respectively. The aph(3')-Ia was found on different large conjugative plasmids belonging to IncI1α, which was present in 67.2% of the strains, on IncHI1, IncHI2, and IncN, as well as on a multicopy ColRNAI plasmid. All these plasmids except ColRNAI carried genes encoding resistance to other antimicrobials or heavy metals, highlighting the risk of co-selection. The aph(3')-Ib gene occurred on a 19 kb chimeric, mobilizable plasmid that contained elements tracing back its origin to distantly related genera. While aph(3')-Ia was flanked by either Tn903 or Tn4352 derivatives, no clear association was observed between aph(3')-Ib and mobile genetic elements. In conclusion, the spread of neomycin resistance in porcine clinical E. coli is driven by two resistance determinants located on distinct plasmid scaffolds circulating within a highly diverse population dominated by ST100. IMPORTANCE Neomycin is the first-choice antibiotic for the management of Escherichia coli enteritis in pigs. This work shows that aph(3')-Ia and to a lesser extent aph(3')-Ib are responsible for the spread of neomycin resistance that has been recently observed among pig clinical isolates and elucidates the mechanisms of dissemination of these two resistance determinants. The aph(3')-Ia gene is located on different conjugative plasmid scaffolds and is associated with two distinct transposable elements (Tn903 and Tn4352) that contributed to its spread. The diffusion of aph(3')-Ib is mediated by a small non-conjugative, mobilizable chimeric plasmid that likely derived from distantly related members of the Pseudomonadota phylum and was not associated with any detectable mobile genetic element. Although the spread of neomycin resistance is largely attributable to horizontal transfer, both resistance determinants have been acquired by a predominant lineage (ST100) associated with enterotoxigenic E. coli, which accounted for approximately one-third of the strains.


Assuntos
Enterite , Escherichia coli Enterotoxigênica , Infecções por Escherichia coli , Animais , Suínos , Neomicina/farmacologia , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Fazendas , Antibacterianos/farmacologia , Plasmídeos/genética , Escherichia coli Enterotoxigênica/genética , Patrimônio Genético , Dinamarca , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
2.
Antibiotics (Basel) ; 12(5)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37237846

RESUMO

Providencia stuartii is a member of the Morganellaceae family, notorious for its intrinsic resistance to several antibiotics, including last-resort drugs such as colistin and tigecycline. Between February and March 2022, a four-patient outbreak sustained by P. stuartii occurred in a hospital in Rome. Phenotypic analyses defined these strains as eXtensively Drug-Resistant (XDR). Whole-genome sequencing was performed on the representative P. stuartii strains and resulted in fully closed genomes and plasmids. The genomes were highly related phylogenetically and encoded various virulence factors, including fimbrial clusters. The XDR phenotype was primarily driven by the presence of the blaNDM-1 metallo-ß-lactamase alongside the rmtC 16S rRNA methyltransferase, conferring resistance to most ß-lactams and every aminoglycoside, respectively. These genes were found on an IncC plasmid that was highly related to an NDM-IncC plasmid retrieved from a ST15 Klebsiella pneumoniae strain circulating in the same hospital two years earlier. Given its ability to acquire resistance plasmids and its intrinsic resistance mechanisms, P. stuartii is a formidable pathogen. The emergence of XDR P. stuartii strains poses a significant public health threat. It is essential to monitor the spread of these strains and develop new strategies for their control and treatment.

3.
Microb Genom ; 9(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36752778

RESUMO

The first reports of carbapenem-resistant Enterobacterales in our hospital date back to 2006. In that period, few ertapenem-resistant but meropenem-susceptible Klebsiella pneumoniae isolates belonging to sequence type (ST) 37 were retrieved from clinical samples. These strains produced the CTX-M-15 extended spectrum ß-lactamase, OmpK35 was depleted due to a nonsense mutation, and a novel OmpK36 variant was identified. Yet, starting from 2010, Klebsiella pneumoniae carbapenemase (KPC)-producing ST512 isolates started prevailing and ST37 vanished from sight. Since 2018 the clinical use of the combination of ceftazidime-avibactam (CZA) has been introduced in clinical practice for the treatment of bacteria producing serine-ß-lactamases, but KPC-producing, CZA-resistant K. pneumoniae are emerging. In 2021, four CZA-resistant ST37 isolates producing KPC variants were isolated from the same number of patients. blaKPC gene cloning in Escherichia coli was used to define the role of those KPC variants on CZA resistance, and whole genome sequencing was performed on these isolates and on three ST37 historical isolates from 2011. CZA resistance was due to mutations in the blaKPC genes carried on related pKpQIL-type plasmids, and three variants of the KPC enzyme have been identified in the four ST37 strains. The four ST37 isolates were closely related to each other and to the historical isolates, suggesting that ST37 survived without notice in our hospital for 10 years, waiting to re-emerge as a CZA-resistant K. pneumoniae clone. The ancestor of these contemporary isolates derives from ST37 wild-type porin strains, with no other mutations in chromosomal genes involved in conferring antibiotic resistance (parC, gyrA, ramR, mgrB, pmrB).


Assuntos
Antibacterianos , Klebsiella pneumoniae , Humanos , Antibacterianos/farmacologia , Ceftazidima/farmacologia , beta-Lactamases/genética , Compostos Azabicíclicos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...