Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; : 116258, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705533

RESUMO

Over the past decade, human genome-wide association and expression studies have strongly implicated dysregulation of the innate immune system in the pathogenesis of Alzheimer's disease (AD). Single cell mRNA sequencing studies have identified innate immune cell subtypes that are minimally present in normal healthy brain, but whose numbers greatly increase in association with AD pathology. These AD pathology-associated immune cells are putatively the locus for the immune-related AD risk. While the prevailing view is that these immune cells arise from transformation of resident brain microglia, studies across several decades and using multiple techniques and strategies suggest instead that the pathology-associated immune cells are bone-marrow derived hematopoietic cells that are recruited into brain. We critically review this translational literature, emphasizing the strengths and limitations of techniques used to address recruitment and the experimental designs employed. We conclude that the aggregate evidence points toward recruitment into brain of innate immune cells of the myeloid dendritic cell lineage. Recruitment of dendritic cells and their role in AD pathogenesis has broad implications for our understanding of the etiology and pathobiology of AD that impact the strategies to develop new, immune system-targeted therapeutics for this devastating disease.

2.
Neuropsychopharmacology ; 49(1): 51-66, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37369776

RESUMO

N-methyl-D-aspartate (NMDA) receptors mediate a slow component of excitatory synaptic transmission, are widely distributed throughout the central nervous system, and regulate synaptic plasticity. NMDA receptor modulators have long been considered as potential treatments for psychiatric disorders including depression and schizophrenia, neurodevelopmental disorders such as Rett Syndrome, and neurodegenerative conditions such as Alzheimer's disease. New interest in NMDA receptors as therapeutic targets has been spurred by the findings that certain inhibitors of NMDA receptors produce surprisingly rapid and robust antidepressant activity by a novel mechanism, the induction of changes in the brain that well outlast the presence of drug in the body. These findings are driving research into an entirely new paradigm for using NMDA receptor antagonists in a host of related conditions. At the same time positive allosteric modulators of NMDA receptors are being pursued for enhancing synaptic function in diseases that feature NMDA receptor hypofunction. While there is great promise, developing the therapeutic potential of NMDA receptor modulators must also navigate the potential significant risks posed by the use of such agents. We review here the emerging pharmacology of agents that target different NMDA receptor subtypes, offering new avenues for capturing the therapeutic potential of targeting this important receptor class.


Assuntos
Psiquiatria , Esquizofrenia , Humanos , Receptores de N-Metil-D-Aspartato/metabolismo , Sistema Nervoso Central , Encéfalo/metabolismo
3.
Pharmacol Rev ; 73(4): 298-487, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34753794

RESUMO

Many physiologic effects of l-glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, are mediated via signaling by ionotropic glutamate receptors (iGluRs). These ligand-gated ion channels are critical to brain function and are centrally implicated in numerous psychiatric and neurologic disorders. There are different classes of iGluRs with a variety of receptor subtypes in each class that play distinct roles in neuronal functions. The diversity in iGluR subtypes, with their unique functional properties and physiologic roles, has motivated a large number of studies. Our understanding of receptor subtypes has advanced considerably since the first iGluR subunit gene was cloned in 1989, and the research focus has expanded to encompass facets of biology that have been recently discovered and to exploit experimental paradigms made possible by technological advances. Here, we review insights from more than 3 decades of iGluR studies with an emphasis on the progress that has occurred in the past decade. We cover structure, function, pharmacology, roles in neurophysiology, and therapeutic implications for all classes of receptors assembled from the subunits encoded by the 18 ionotropic glutamate receptor genes. SIGNIFICANCE STATEMENT: Glutamate receptors play important roles in virtually all aspects of brain function and are either involved in mediating some clinical features of neurological disease or represent a therapeutic target for treatment. Therefore, understanding the structure, function, and pharmacology of this class of receptors will advance our understanding of many aspects of brain function at molecular, cellular, and system levels and provide new opportunities to treat patients.


Assuntos
Receptores de Glutamato , Receptores Ionotrópicos de Glutamato , Animais , Sistema Nervoso Central , Ácido Glutâmico , Humanos , Neurotransmissores , Receptores Ionotrópicos de Glutamato/genética
4.
Neuropharmacology ; 173: 107994, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32057801

RESUMO

NMDA receptors containing GluN2D subunits are expressed in the subthalamic nucleus and external globus pallidus, key nuclei of the indirect and hyperdirect pathways of the basal ganglia. This circuitry integrates cortical input with dopaminergic signaling to select advantageous behaviors among available choices. In the experiments described here, we characterized the effects of PTC-174, a novel positive allosteric modulator (PAM) of GluN2D subunit-containing NMDA receptors, on response control regulated by this circuitry. The indirect pathway suppresses less advantageous behavioral choices, a manifestation of which is suppression of locomotor activity in rats. Systemic administration of PTC-174 produced a dose-dependent reduction in activity in rats placed in a novel open field or administered the stimulants MK-801 or amphetamine. The hyperdirect pathway controls release of decisions from the basal ganglia to the cortex to optimize choice processing. Such response control was modeled in rats as premature responding in the 5-choice serial reaction time (5-CSRT) task. PTC-174 produced a dose-dependent reduction in premature responding in this task. These data suggest that potentiation of GluN2D receptor activity by PTC-174 facilitates the complex basal ganglia information processing that underlies response control. The behavioral effects occurred at estimated free PTC-174 brain concentrations predicted to induce 10-50% increases in GluN2D activity. The present findings suggest the potential of GluN2D PAMs to modulate basal ganglia function and to treat neurological disorders related to dysfunctional response control.


Assuntos
Receptores de N-Metil-D-Aspartato/efeitos dos fármacos , Regulação Alostérica , Anfetamina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Maleato de Dizocilpina/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley
5.
Neuropharmacology ; 173: 107971, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-31987864

RESUMO

NMDA receptors are ionotropic glutamate receptors that mediate excitatory neurotransmission. The diverse functions of these receptors are tuned by deploying different combinations of GluN1 and GluN2 subunits (GluN2A-D) to form either diheteromeric NMDA receptors, which contain two GluN1 and two identical GluN2 subunits, or triheteromeric NMDA receptors, which contain two GluN1 and two distinct GluN2 subunits. Here, we characterize PTC-174, a novel positive allosteric modulator (PAM) of receptors containing GluN2C or GluN2D subunits. PTC-174 potentiates maximal current amplitudes by 1.8-fold for diheteromeric GluN1/2B receptors and by > 10-fold for GluN1/2C and GluN1/2D receptors. PTC-174 also potentiates responses from triheteromeric GluN1/2B/2D and GluN1/2A/2C receptors by 4.5-fold and 1.7-fold, respectively. By contrast, PTC-174 produces partial inhibition of responses from diheteromeric GluN1/2A and triheteromeric GluN1/2A/2B receptors. PTC-174 increases potencies of co-agonists glutamate and glycine by 2- to 5-fold at GluN1/2C and GluN1/2D receptors, and NMDA receptor activation facilitates allosteric modulation by PTC-174. At native NMDA receptors in GluN2D-expressing subthalamic nucleus neurons, PTC-174 increases the amplitude of responses to NMDA application and slows the decay of excitatory postsynaptic currents (EPSCs) evoked by internal capsule stimulation. Furthermore, PTC-174 increases the amplitude and slows the decay of EPSCs in hippocampal interneurons, but has not effect on the amplitudes of NMDA receptor-mediated EPSCs in hippocampal CA1 pyramidal neurons. Thus, PTC-174 provides a useful new pharmacological tool to investigate the molecular pharmacology and physiology of GluN2C- and GluN2D-containing NMDA receptors.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Agonistas de Aminoácidos Excitatórios/farmacologia , Feminino , Glicina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células Piramidais/efeitos dos fármacos , Células Piramidais/fisiologia , Núcleo Subtalâmico/efeitos dos fármacos , Núcleo Subtalâmico/fisiologia , Xenopus
6.
Front Neurosci ; 14: 600178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33551724

RESUMO

PDE10A, a phosphodiesterase that inactivates both cAMP and cGMP, is a unique signaling molecule in being highly and nearly exclusively expressed in striatal medium spiny neurons. These neurons dynamically integrate cortical information with dopamine-signaled value to mediate action selection among available behavioral options. Medium spiny neurons are components of either the direct or indirect striatal output pathways. Selective activation of indirect pathway medium spiny neurons by dopamine D2 receptor antagonists is putatively a key element in the mechanism of their antipsychotic efficacy. While PDE10A is expressed in all medium spiny neurons, studies in rodents indicated that PDE10A inhibition has behavioral effects in several key assays that phenocopy dopamine D2 receptor inhibition. This finding gave rise to the hypothesis that PDE10A inhibition also preferentially activates indirect pathway medium spiny neurons, a hypothesis that is consistent with electrophysiological, neurochemical, and molecular effects of PDE10A inhibitors. These data underwrote industry-wide efforts to investigate and develop PDE10A inhibitors as novel antipsychotics. Disappointingly, PDE10A inhibitors from 3 companies failed to evidence antipsychotic activity in patients with schizophrenia to the same extent as standard-of-care D2 antagonists. Given the notable similarities between PDE10A inhibitors and D2 antagonists, gaining an understanding of why only the latter class is antipsychotic affords a unique window into the basis for this therapeutic efficacy. With this in mind, we review the data on PDE10A inhibition as a step toward back-translating the limited antipsychotic efficacy of PDE10A inhibitors, hopefully to inform new efforts to develop better therapeutics to treat psychosis and schizophrenia.

7.
Front Neurosci ; 13: 837, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507355

RESUMO

PDE9A is a cGMP-specific phosphodiesterase expressed in neurons throughout the brain that has attracted attention as a therapeutic target to treat cognitive disorders. Indeed, PDE9A inhibitors are under evaluation in clinical trials as a treatment for Alzheimer's disease and schizophrenia. However, little is known about the cGMP signaling cascades regulated by PDE9A. Canonical cGMP signaling in brain follows the activation of neuronal nitric oxide synthase (nNOS) and the generation of nitric oxide, which activates soluble guanylyl cyclase and cGMP synthesis. However, we show that in mice, PDE9A regulates a pool of cGMP that is independent of nNOS, specifically, and nitric oxide signaling in general. This PDE9A-regulated cGMP pool appears to be highly compartmentalized and independent of cGMP pools regulated by several PDEs. These findings provide a new foundation for study of the upstream and downstream signaling elements regulated by PDE9A and its potential as a therapeutic target for brain disease.

8.
J Med Chem ; 61(10): 4635-4640, 2018 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-29718668

RESUMO

We disclose the discovery and X-ray cocrystal data of potent, selective quinazoline inhibitors of PDE1. Inhibitor ( S)-3 readily attains free plasma concentrations above PDE1 IC50 values and has restricted brain access. The racemic compound 3 inhibits >75% of PDE hydrolytic activity in soluble samples of human myocardium, consistent with heightened PDE1 activity in this tissue. These compounds represent promising new tools to probe the value of PDE1 inhibition in the treatment of cardiovascular disease.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 1/antagonistas & inibidores , Descoberta de Drogas , Miocárdio/enzimologia , Inibidores de Fosfodiesterase/química , Inibidores de Fosfodiesterase/farmacologia , Quinazolinas/química , AMP Cíclico/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Conformação Proteica
9.
Neurobiol Aging ; 65: 217-234, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29505961

RESUMO

3',5'-Cyclic nucleotide phosphodiesterases (PDEs) degrade 3',5' cyclic adenonosine monophosphate (cAMP) and 3',5' cyclic guanosine monophosphate (cGMP), with PDE9A having the highest affinity for cGMP. We show PDE9A6 and 3 novel PDE9 isoforms (PDE9X-100, PDE9X-120, and PDE9X-175) are reliably detected in the brain and lung of mice, whereas PDE9A2 and other isoforms are found elsewhere. PDE9A localizes to the membrane in all organs except the bladder, where it is cytosolic. Brain additionally shows PDE9 in the nuclear fraction. PDE9A mRNA expression/localization dramatically changes across neurodevelopment in a manner that is strikingly consistent between mice and humans (i.e., decreased expression in the hippocampus and cortex and inverted-U in the cerebellum). Study of the 4 PDE9 isoforms in the mouse brain from postnatal day 7 through 24 months similarly identifies dramatic effects of age on expression and subcellular compartmentalization that are isoform specific and brain region specific. Finally, PDE9A mRNA is elevated in the aged human hippocampus with dementia when there is a history of traumatic brain injury. Thus, brain PDE9 is localized to preferentially regulate nuclear- and membrane-proximal pools of cGMP, and its function likely changes across the life span.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Compartimento Celular/genética , Expressão Gênica , Frações Subcelulares/metabolismo , Animais , GMP Cíclico/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Methods Mol Biol ; 1677: 1-80, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28986865

RESUMO

NMDA-type glutamate receptors are ligand-gated ion channels that mediate a major component of excitatory neurotransmission in the central nervous system (CNS). They are widely distributed at all stages of development and are critically involved in normal brain functions, including neuronal development and synaptic plasticity. NMDA receptors are also implicated in the pathophysiology of numerous neurological and psychiatric disorders, such as ischemic stroke, traumatic brain injury, Alzheimer's disease, epilepsy, mood disorders, and schizophrenia. For these reasons, NMDA receptors have been intensively studied in the past several decades to elucidate their physiological roles and to advance them as therapeutic targets. Seven NMDA receptor subunits exist that assemble into a diverse array of tetrameric receptor complexes, which are differently regulated, have distinct regional and developmental expression, and possess a wide range of functional and pharmacological properties. The diversity in subunit composition creates NMDA receptor subtypes with distinct physiological roles across neuronal cell types and brain regions, and enables precise tuning of synaptic transmission. Here, we will review the relationship between NMDA receptor structure and function, the diversity and significance of NMDA receptor subtypes in the CNS, as well as principles and rules by which NMDA receptors operate in the CNS under normal and pathological conditions.


Assuntos
Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Isquemia Encefálica/metabolismo , Sistema Nervoso Central/metabolismo , Pareamento Cromossômico/fisiologia , Humanos , Receptores de Glutamato/metabolismo , Transdução de Sinais/fisiologia , Acidente Vascular Cerebral/metabolismo
11.
Neuron ; 91(6): 1316-1329, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27618671

RESUMO

NMDA receptors mediate excitatory synaptic transmission and regulate synaptic plasticity in the central nervous system, but their dysregulation is also implicated in numerous brain disorders. Here, we describe GluN2A-selective negative allosteric modulators (NAMs) that inhibit NMDA receptors by stabilizing the apo state of the GluN1 ligand-binding domain (LBD), which is incapable of triggering channel gating. We describe structural determinants of NAM binding in crystal structures of the GluN1/2A LBD heterodimer, and analyses of NAM-bound LBD structures corresponding to active and inhibited receptor states reveal a molecular switch in the modulatory binding site that mediate the allosteric inhibition. NAM binding causes displacement of a valine in GluN2A and the resulting steric effects can be mitigated by the transition from glycine bound to apo state of the GluN1 LBD. This work provides mechanistic insight to allosteric NMDA receptor inhibition, thereby facilitating the development of novel classes NMDA receptor modulators as therapeutic agents.


Assuntos
Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/química , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Animais , Cristalografia , Glicina/farmacologia , Modelos Moleculares , Pirazinas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sulfonamidas/farmacologia , Xenopus laevis
13.
PLoS One ; 11(2): e0148129, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26829109

RESUMO

GluN2A is the most abundant of the GluN2 NMDA receptor subunits in the mammalian CNS. Physiological and genetic evidence implicate GluN2A-containing receptors in susceptibility to autism, schizophrenia, childhood epilepsy and neurodevelopmental disorders such as Rett Syndrome. However, GluN2A-selective pharmacological probes to explore the therapeutic potential of targeting these receptors have been lacking. Here we disclose a novel series of pyrazine-containing GluN2A antagonists exemplified by MPX-004 (5-(((3-chloro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)pyrazine-2-carboxamide) and MPX-007 (5-(((3-fluoro-4-fluorophenyl)sulfonamido)methyl)-N-((2-methylthiazol-5-yl)methyl)methylpyrazine-2-carboxamide). MPX-004 and MPX-007 inhibit GluN2A-containing NMDA receptors expressed in HEK cells with IC50s of 79 nM and 27 nM, respectively. In contrast, at concentrations that completely inhibited GluN2A activity these compounds have no inhibitory effect on GluN2B or GluN2D receptor-mediated responses in similar HEK cell-based assays. Potency and selectivity were confirmed in electrophysiology assays in Xenopus oocytes expressing GluN2A-D receptor subtypes. Maximal concentrations of MPX-004 and MPX-007 inhibited ~30% of the whole-cell current in rat pyramidal neurons in primary culture and MPX-004 inhibited ~60% of the total NMDA receptor-mediated EPSP in rat hippocampal slices. GluN2A-selectivity at native receptors was confirmed by the finding that MPX-004 had no inhibitory effect on NMDA receptor mediated synaptic currents in cortical slices from GRIN2A knock out mice. Thus, MPX-004 and MPX-007 offer highly selective pharmacological tools to probe GluN2A physiology and involvement in neuropsychiatric and developmental disorders.


Assuntos
Subunidades Proteicas/metabolismo , Pirazinas/farmacologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sulfonamidas/farmacologia , Animais , Região CA1 Hipocampal/citologia , Cálcio/metabolismo , Células Cultivadas , Cães , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Feminino , Ácido Glutâmico/metabolismo , Glicina/metabolismo , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Células Madin Darby de Rim Canino , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Oócitos/metabolismo , Pirazinas/química , Ratos Sprague-Dawley , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Relação Estrutura-Atividade , Sulfonamidas/química , Xenopus
14.
Neuropsychopharmacology ; 41(6): 1486-94, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26404843

RESUMO

Ketamine, a pan-NMDA receptor channel blocker, and CP-101,606, an NR2B-selective negative allosteric modulator, have antidepressant effects in humans that develop rapidly after the drugs are cleared from the body. It has been proposed that the antidepressant effect of ketamine results from delayed synaptic potentiation. To further investigate this hypothesis and potential mechanistic underpinnings we compared the effects of ketamine and CP-101,606 on neurophysiological biomarkers in rats immediately after drug administration and after the drugs had been eliminated. Local field and auditory-evoked potentials (AEPs) were recorded from primary auditory cortex and hippocampus in freely moving rats. Effects of different doses of ketamine or CP-101,606 were evaluated on amplitude of AEPs, auditory gating, and absolute power of delta and gamma oscillations 5-30 min (drug-on) and 5-6 h (drug-off) after systemic administration. Both ketamine and CP-101,606 significantly enhanced AEPs in cortex and hippocampus in the drug-off phase. In contrast, ketamine but not CP-101,606 disrupted auditory gating and increased gamma-band power during the drug-on period. Although both drugs affected delta power, these changes did not correlate with increase in AEPs in the drug-off phase. Our findings show that both ketamine and CP-101,606 augment AEPs after drug elimination, consistent with synaptic potentiation as a mechanism for antidepressant efficacy. However, these drugs had different acute effects on neurophysiological parameters. These results have implications for understanding the underlying mechanisms for the rapid-onset antidepressant effects of NMDA receptor inhibition and for the use of electrophysiological measures as translatable biomarkers.


Assuntos
Antidepressivos/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Ritmo Gama/efeitos dos fármacos , Ketamina/farmacologia , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Sinapses/efeitos dos fármacos , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/fisiologia , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Potenciais Evocados Auditivos/efeitos dos fármacos , Ritmo Gama/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley
15.
Ann N Y Acad Sci ; 1344: 1-11, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25752480

RESUMO

Neuroscience has made tremendous progress delineating the cellular and molecular processes important for understanding neuronal development and behavior, but this knowledge has been slow to translate to new treatments for psychiatric illness. To accelerate this transfer of knowledge to the human condition requires the wide-scale adoption of biomarkers that can bridge preclinical and clinical discoveries, and serve as surrogate measures of efficacy before commencing expensive phase III studies. Several biomarker methodologies, including imaging, electroencephalography (EEG), and blood transcriptomics/proteomics, are now showing promise. From an industry perspective, we highlight the utility of quantitative EEG as one example of a translatable biomarker applicable to psychiatric drug development and discuss recent insights into glutamate system dysfunction in schizophrenia and depression gained through translational studies of the drug ketamine.


Assuntos
Psiquiatria/métodos , Pesquisa Translacional Biomédica/métodos , Biomarcadores/sangue , Ensaios Clínicos Fase III como Assunto , Depressão/sangue , Depressão/tratamento farmacológico , Depressão/patologia , Depressão/fisiopatologia , Desenho de Fármacos , Perfilação da Expressão Gênica/métodos , Perfilação da Expressão Gênica/tendências , Humanos , Proteômica/métodos , Proteômica/tendências , Psiquiatria/tendências , Esquizofrenia/sangue , Esquizofrenia/tratamento farmacológico , Esquizofrenia/patologia , Esquizofrenia/fisiopatologia , Pesquisa Translacional Biomédica/tendências
16.
Neuropharmacology ; 77: 257-67, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24490227

RESUMO

Phosphodiesterase 10A (PDE10A) is highly expressed in striatal medium spiny neurons of both the direct and indirect output pathways. Similar to dopamine D2 receptor antagonists acting on indirect pathway neurons, PDE10A inhibitors have shown behavioral effects in rodent models that predict antipsychotic efficacy. These findings have supported the clinical investigation of PDE10A inhibitors as a new treatment for schizophrenia. However, PDE10A inhibitors and D2 antagonists differ in effects on direct pathway and other neurons of the basal ganglia, indicating that these two drug classes may have divergent antipsychotic efficacy and side effect profile. In the present study, we compare the behavioral effects of the selective PDE10A inhibitor MP-10 to those of the clinical standard D2 antagonist risperidone in rhesus monkeys using a standardized motor disability scale for parkinsonian primates and a newly designed "Drug Effects on Nervous System" scale to assess non-motor effects. Behavioral effects of MP-10 correlated with its plasma levels and its regulation of metabolic activity in striatal and cortical regions as measured by FDG-PET imaging. While MP-10 and risperidone broadly impacted similar behavioral domains in the primate, their effects had a different underlying basis. MP-10-treated animals retained the ability to respond but did not engage tasks, whereas risperidone-treated animals retained the motivation to respond but were unable to perform the intended actions. These findings are discussed in light of what is currently known about the modulation of striatal circuitry by these two classes of compounds, and provide insight into interpreting emerging clinical data with PDE10A inhibitors for the treatment of psychotic symptoms.


Assuntos
Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Pirazóis/farmacologia , Quinolinas/farmacologia , Risperidona/farmacologia , Animais , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Feminino , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Macaca mulatta , Masculino , Inibidores de Fosfodiesterase/sangue , Pirazóis/sangue , Quinolinas/sangue , Esquizofrenia/tratamento farmacológico
17.
J Pharmacol Exp Ther ; 347(1): 212-24, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23899905

RESUMO

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) positive allosteric modulation (i.e., "potentiation") has been proposed to overcome cognitive impairments in schizophrenia, but AMPAR overstimulation can be excitotoxic. Thus, it is critical to define carefully a potentiator's mechanism-based therapeutic index (TI) and to determine confidently its translatability from rodents to higher-order species. Accordingly, the novel AMPAR potentiator N-{(3R,4S)-3-[4-(5-cyano-2-thienyl)phenyl]tetrahydro-2H-pyran-4-yl}propane-2-sulfonamide (PF-4778574) was characterized in a series of in vitro assays and single-dose animal studies evaluating AMPAR-mediated activities related to cognition and safety to afford an unbound brain compound concentration (Cb,u)-normalized interspecies exposure-response relationship. Because it is unknown which AMPAR subtype(s) may be selectively potentiated for an optimal TI, PF-4778574 binding affinity and functional potency were determined in rodent tissues expected to express a native mixture of AMPAR subunits and their associated proteins to afford composite pharmacological values. Functional activity was also quantified in recombinant cell lines stably expressing human GluA2 flip or flop homotetramers. Procognitive effects of PF-4778574 were evaluated in both rat electrophysiological and nonhuman primate (nhp) behavioral models of pharmacologically induced N-methyl-d-aspartate receptor hypofunction. Safety studies assessed cerebellum-based AMPAR activation (mouse) and motor coordination disruptions (mouse, dog, and nhp), as well as convulsion (mouse, rat, and dog). The resulting empirically derived exposure-response continuum for PF-4778574 defines a single-dose-based TI of 8- to 16-fold for self-limiting tremor, a readily monitorable clinical adverse event. Importantly, the Cb,u mediating each physiological effect were highly consistent across species, with efficacy and convulsion occurring at just fractions of the in vitro-derived pharmacological values.


Assuntos
Agonistas de Aminoácidos Excitatórios/farmacologia , Receptores de AMPA/agonistas , Receptores de AMPA/fisiologia , Tiofenos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Animais , Células Cultivadas , Cães , Agonistas de Aminoácidos Excitatórios/uso terapêutico , Feminino , Células HEK293 , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Desempenho Psicomotor/efeitos dos fármacos , Desempenho Psicomotor/fisiologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Convulsões/fisiopatologia , Convulsões/prevenção & controle , Tiofenos/uso terapêutico , Resultado do Tratamento
18.
Expert Opin Ther Targets ; 17(9): 1011-27, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23883342

RESUMO

INTRODUCTION: The second messengers cAMP and cGMP mediate fundamental aspects of brain function relevant to memory, learning, and cognitive functions. Consequently, cyclic nucleotide phosphodiesterases (PDEs), the enzymes that inactivate the cyclic nucleotides, are promising targets for the development of cognition-enhancing drugs. AREAS COVERED: PDE4 is the largest of the 11 mammalian PDE families. This review covers the properties and functions of the PDE4 family, highlighting procognitive and memory-enhancing effects associated with their inactivation. EXPERT OPINION: PAN-selective PDE4 inhibitors exert a number of memory- and cognition-enhancing effects and have neuroprotective and neuroregenerative properties in preclinical models. The major hurdle for their clinical application is to target inhibitors to specific PDE4 isoforms relevant to particular cognitive disorders to realize the therapeutic potential while avoiding side effects, in particular emesis and nausea. The PDE4 family comprises four genes, PDE4A-D, each expressed as multiple variants. Progress to date stems from characterization of rodent models with selective ablation of individual PDE4 subtypes, revealing that individual subtypes exert unique and non-redundant functions in the brain. Thus, targeting specific PDE4 subtypes, as well as splicing variants or conformational states, represents a promising strategy to separate the therapeutic benefits from the side effects of PAN-PDE4 inhibitors.


Assuntos
Cognição/efeitos dos fármacos , Memória/efeitos dos fármacos , Inibidores da Fosfodiesterase 4/farmacologia , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Humanos
19.
J Neurosci Methods ; 215(1): 97-102, 2013 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-23419700

RESUMO

Research into therapeutics for neuropsychiatric disorders is increasingly focusing on drugs with new mechanisms of action, and such agents are often assessed in preclinical studies using nonhuman primates. However, researchers lack a standardised method to compare different drugs for common adverse effects on the nervous system. We have developed a new scale for this purpose, named "Drug Effects on the Nervous System" (DENS), and tested its utility in an analysis of the second-generation antipsychotic risperidone in monkeys. The behavioural effects of risperidone over a ten-fold clinically relevant exposure range were rated with the DENS scale and compared with a standard motor disability scale for primates. The ratings were correlated with projected D2 and 5-HT2A receptor occupancies over time. The DENS scale detected dose-dependent side effects of risperidone in addition to the motor effects detected with the motor disability scale, including cognitive, sensorimotor and autonomic functions. A consistent temporal association between the DENS scale changes and the projected D2 receptor occupancy was observed, and the DENS scale ratings demonstrated high inter-rater reliability. These results demonstrate the usefulness of the DENS scale as a highly sensitive, reliable and accurate method to identify common adverse effects of risperidone and potentially other neurotropics for translational studies in primates.


Assuntos
Sistema Nervoso/efeitos dos fármacos , Psicotrópicos/efeitos adversos , Algoritmos , Animais , Antipsicóticos/efeitos adversos , Antipsicóticos/metabolismo , Antipsicóticos/farmacocinética , Sistema Nervoso Autônomo/efeitos dos fármacos , Doenças dos Gânglios da Base/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Discinesia Induzida por Medicamentos/fisiopatologia , Feminino , Macaca fascicularis , Macaca mulatta , Masculino , Variações Dependentes do Observador , Psicotrópicos/metabolismo , Psicotrópicos/farmacocinética , Receptores de Droga/metabolismo , Padrões de Referência , Risperidona/efeitos adversos , Risperidona/metabolismo , Risperidona/farmacocinética
20.
Curr Top Med Chem ; 13(1): 26-54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23409764

RESUMO

Schizophrenia is a highly debilitating mental disorder which afflicts approximately 1% of the global population. Cognitive and negative deficits account for the lifelong disability associated with schizophrenia, whose symptoms are not effectively addressed by current treatments. New medicines are needed to treat these aspects of the disease. Neurodevelopmental, neuropathological, genetic, and behavioral pharmacological data indicate that schizophrenia stems from a dysfunction of glutamate synaptic transmission, particularly in frontal cortical networks. A number of novel pre- and postsynaptic mechanisms affecting glutamatergic synaptic transmission have emerged as viable targets for schizophrenia. While developing orthosteric glutamatergic agents for these targets has proven extremely difficult, targeting allosteric sites of these targets has emerged as a promising alternative. From a medicinal chemistry perspective, allosteric sites provide an opportunity of finding agents with better drug-like properties and greater target specificity. Furthermore, allosteric modulators are better suited to maintaining the highly precise temporal and spatial aspects of glutamatergic synaptic transmission. Herein, we review neuropathological and genomic/genetic evidence underscoring the importance of glutamate synaptic dysfunction in the etiology of schizophrenia and make a case for allosteric targets for therapeutic intervention. We review progress in identifying allosteric modulators of AMPA receptors, NMDA receptors, and metabotropic glutamate receptors, all with the aim of restoring physiological glutamatergic synaptic transmission. Challenges remain given the complexity of schizophrenia and the difficulty in studying cognition in animals and humans. Nonetheless, important compounds have emerged from these efforts and promising preclinical and variable clinical validation has been achieved.


Assuntos
Antipsicóticos/farmacologia , Receptores de AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/metabolismo , Regulação Alostérica , Sítio Alostérico , Cognição/efeitos dos fármacos , Desenho de Fármacos , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Humanos , Ligantes , Modelos Moleculares , Receptores de AMPA/agonistas , Receptores de AMPA/antagonistas & inibidores , Receptores de AMPA/genética , Receptores de Glutamato Metabotrópico/agonistas , Receptores de Glutamato Metabotrópico/antagonistas & inibidores , Receptores de Glutamato Metabotrópico/genética , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/genética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/fisiopatologia , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...