Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Wound Care ; 32(Sup5a): lxiii-lxxiv, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094978

RESUMO

OBJECTIVE: Treatment of contaminated wounds represents a significant challenge in healthcare and there is a need to develop approaches maximising skin retention to maintain therapeutic concentrations of anti-infectives at the wound site. The objective of the present study was to develop and evaluate mupirocin calcium nanolipid emulgels to enhance wound healing performance and patient acceptability. METHODS: Nanostructured lipid carriers (NLCs) of mupirocin calcium were prepared by the phase inversion temperature method using Precirol ATO 5 (Gattefosse, India) and oleic acid as lipids and Kolliphor RH 40 (BASF, India) as surfactant and further incorporated into a gel base for topical delivery. RESULTS: The particle size, polydispersity index and zeta potential of mupirocin NLCs were found to be 128.8±1.25nm, 0.283±0.003 and -24.2±0.56mV, respectively. In vitro release studies from developed emulgel showed sustained drug release over 24 hours. Ex vivo drug permeation studies through excised rat abdominal skin showed better skin permeation (1712.38±15. 57µg/cm2) from developed emulgel compared to marketed ointment (827.92±21.42µg/cm2) after 8 hours, which was in agreement with in vitro antibacterial activity. Studies on Wistar rats indicated the nonirritant potential of developed emulgels. Further, mupirocin emulgels showed improved efficacy in percent wound contraction of acute contaminated open wounds in Wistar rats using a full-thickness excision wound healing model. CONCLUSION: The emulgels of mupirocin calcium NLCs appear to be effective in the treatment of contaminated wounds due to increased skin deposition and sustained release, thereby enhancing the wound healing potential of existing molecules.


Assuntos
Sistemas de Liberação de Medicamentos , Mupirocina , Ratos , Animais , Mupirocina/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Ratos Wistar , Pele , Cicatrização
2.
J Aerosol Med Pulm Drug Deliv ; 29(2): 179-95, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26406162

RESUMO

BACKGROUND: The lung is the primary entry site and target for Mycobacterium tuberculosis; more than 80% of the cases reported worldwide are of pulmonary tuberculosis. Hence, direct delivery of anti-tubercular drugs to the lung would be beneficial in reducing both, the dose required, as well as the duration of therapy for pulmonary tuberculosis. In the present study, microsphere-based dry powder inhalation systems of the anti-tubercular drugs, rifampicin and rifabutin, were developed and evaluated, with a view to achieve localized and targeted delivery of these drugs to the lung. METHODS: The drug-loaded chitosan microparticles were prepared by an ionic gelation method, followed by spray-drying to obtain respirable particles. The microparticles were evaluated for particle size and drug release. The drug-loaded microparticles were then adsorbed onto an inhalable lactose carrier and characterized for in vitro lung deposition on an Andersen Cascade Impactor (ACI) followed by in vitro uptake study in U937 human macrophage cell lines. In vivo toxicity of the developed formulations was evaluated using Sprague Dawley rats. RESULTS: Both rifampicin and rifabutin-loaded microparticles had MMAD close to 5 µm and FPF values of 21.46% and 29.97%, respectively. In vitro release study in simulated lung fluid pH 7.4 showed sustained release for 12 hours for rifampicin microparticles and up to 96 hours for rifabutin microparticles, the release being dependent on both swelling of the polymer and solubility of the drugs in the dissolution medium. In vitro uptake studies in U937 human macrophage cell line suggested that microparticles were internalized within the macrophages. In vivo acute toxicity study of the microparticles in Sprague Dawley rats revealed no significant evidence for local adverse effects. CONCLUSION: Thus, spray-dried microparticles of the anti-tubercular drugs, rifampicin and rifabutin, could prove to be an improved, targeted, and efficient system for treatment of tuberculosis.


Assuntos
Antibióticos Antituberculose/administração & dosagem , Quitosana/química , Portadores de Fármacos , Inaladores de Pó Seco , Pulmão/metabolismo , Rifabutina/administração & dosagem , Rifampina/administração & dosagem , Administração por Inalação , Aerossóis , Animais , Antibióticos Antituberculose/química , Antibióticos Antituberculose/metabolismo , Antibióticos Antituberculose/toxicidade , Quitosana/toxicidade , Preparações de Ação Retardada , Composição de Medicamentos , Estabilidade de Medicamentos , Feminino , Humanos , Cinética , Lactose/química , Macrófagos/metabolismo , Tamanho da Partícula , Pós , Ratos Sprague-Dawley , Rifabutina/química , Rifabutina/metabolismo , Rifabutina/toxicidade , Rifampina/química , Rifampina/metabolismo , Rifampina/toxicidade , Solubilidade , Propriedades de Superfície , Células U937
3.
AAPS PharmSciTech ; 17(6): 1298-1311, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26689406

RESUMO

Targeted drug delivery systems for cancer improves anti-tumor efficacy and reduces systemic toxicity by restricting availability of cytotoxic drugs within tumors. Targeting moieties, such as natural ligands (folic acid, transferrin, and biotin) which are overexpressed on tumors, have been used to enhance liposome-encapsulated drug accumulation within tumors and resulted in better control. In this report, we explored the scope of targeting ligand folic acid, which is incorporated in liposome systems using folic acid-modified cholesterol (CPF), enabled highly selective tumor-targeted delivery of liposome-encapsulated doxorubicin and resulted in increased cytotoxicity within tumors. Folate-tagged poloxamer-coated liposomes (FDL) were found to have significantly higher cellular uptake than conventional poloxamer-coated liposomes (DL), as confirmed by fluorometric analysis in B16F10 melanoma cells. Biodistribution study of the radiolabeled liposomal system indicated the significantly higher tumor uptake of FDL as compared to DL. Anti-tumor activity of FDL against murine B16F10 melanoma tumor-bearing mice revealed that FDL inhibited tumor growth more efficiently than the DL. Taken together, the results demonstrated the significant potential of the folate-conjugated nanoliposomal system for drug delivery to tumors.


Assuntos
Doxorrubicina/farmacologia , Ácido Fólico/metabolismo , Lipossomos/farmacologia , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Células A549 , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Colesterol/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Feminino , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/metabolismo , Distribuição Tecidual
4.
J Aerosol Med Pulm Drug Deliv ; 28(4): 254-67, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25517187

RESUMO

BACKGROUND: Dry powder inhalers (DPI) are generally formulated by mixing micronized drug particles with coarse lactose carrier particles to assist powder handling during the manufacturing and powder aerosol delivery during patient use. METHODS: In the present study, surface modified lactose (SML) particles were produced using force control agents, and their in vitro performance on dry powder inhaler (DPI) formulation of Fluticasone propionate was studied. With a view to reduce surface passivation of high surface free energy sites on the most commonly used DPI carrier, α- lactose monohydrate, effects of various force control agents such as Pluronic F-68, Cremophor RH 40, glyceryl monostearate, polyethylene glycol 6000, magnesium stearate, and soya lecithin were studied. RESULTS: DPI formulations prepared with SML showed improved flow properties, and atomic force microscopy (AFM) studies revealed decrease in surface roughness. The DSC and X-ray diffraction patterns of SML showed no change in the crystal structure and thermal behavior under the experimental conditions. The fine particle fraction (FPF) values of lactose modified with Pluronic F-68, Cremophor RH 40, glyceryl monostearate were improved, with increase in concentration up to 0.5%. Soya lecithin and PEG 6000 modified lactose showed decrease in FPF value with increase in concentration. Increase in FPF value was observed with increasing concentration of magnesium stearate. Two different DPI devices, Rotahaler(®) and Diskhaler(®), were compared to evaluate the performance of SML formulations. FPF value of all SML formulations were higher using both devices as compared to the same formulations prepared using untreated lactose. One month stability of SML formulations at 40°C/75% RH, in permeable polystyrene tubes did not reveal any significant changes in FPF values. CONCLUSION: SML particles can help in reducing product development hindrances and improve inhalational properties of DPI.


Assuntos
Broncodilatadores/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos/instrumentação , Inaladores de Pó Seco , Fluticasona/administração & dosagem , Lactose/química , Aerossóis , Broncodilatadores/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Cristalografia por Raios X , Estabilidade de Medicamentos , Desenho de Equipamento , Excipientes/química , Fluticasona/química , Umidade , Microscopia de Força Atômica , Difração de Pó , Pós , Reologia , Propriedades de Superfície , Temperatura , Fatores de Tempo
5.
J Pharmacol Pharmacother ; 4(4): 243-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24250200

RESUMO

OBJECTIVE: To compare the bioavailability of two brands of phenytoin sodium tablets available in the Indian market using Eptoin™ as the reference. MATERIALS AND METHODS: A randomized, assessor-blind, three-way crossover design study was carried out over a period of 6 months after approval from the Institutional Review Board (IRB). Twenty-two healthy male participants received a single oral 300 mg oral tablet of either of the formulations with a 2-week washout. Blood samples were collected predose and at regular intervals postdose. Plasma phenytoin levels were estimated by high-performance liquid chromatography. Calculation of Cmax, AUC0-t, and AUC0-∞ was done by the linear trapezoidal rule and 90-110% margin (90% confidence interval (CI)) was used to assess bioequivalence. RESULTS: Twenty volunteers completed the study. It was seen that the log-transformed values of Cmax, AUC0-t, and AUC0-∞ of the test formulations were not within the specified limits. CONCLUSION: Bioinequivalence of available phenytoin brands indicates that switching brands could lead to variations in blood concentrations and thus impact safety and efficacy. If a brand switch is done for any reason, stringent drug-level monitoring is advised.

6.
Indian J Pharm Sci ; 74(6): 521-6, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23798777

RESUMO

Cisplatin, a platinum compound, exerts its cytotoxic effects by coordinating to DNA where it inhibits both replication and transcription, and induces programmed cell death. It is used in the treatment of non-small cell lung cancer. In the present study, an attempt was made to achieve better treatment of lung cancer by direct lung delivery of cisplatin microparticulate systems, which helps to localize the drug in the lungs, and also provide sustained action. Cisplatin-loaded chitosan microspheres were prepared by emulsification and ionotropic gelation method, and characterized for drug content, particle size, densities, flow properties, moisture content, and surface topography by SEM and in vitro drug release was evaluated in simulated lung fluid at 37° at pH 7.4. The respirable or fine particle fraction (FPF) was determined by using twin stage impinger (TSI). Further stability evaluation of cisplatin-loaded DPI systems was carried out at 25°/60% RH and at 40°/75% RH.

7.
Indian J Pharm Sci ; 73(6): 656-62, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23112400

RESUMO

Etoposide is a semisynthetic compound, widely used in treatment of non small cell lung cancer. However, frequent dosing and adverse effects remain a major concern in the use of etoposide. Liposomal systems for pulmonary drug delivery have been particularly attractive because of their compatibility with lung surfactant components. In the present investigation, pulmonary liposomal delivery system of etoposide was prepared by film hydration method. Various parameters were optimized with respect to entrapment efficiency as well as particle size of etoposide liposomes. For better shelf life of etoposide liposomes, freeze drying using trehalose as cryoprotectant was carried out. The liposomes were characterized for entrapment efficiency, particle size, surface topography, and in vitro drug release was carried out in simulated lung fluid at 37° at pH 7.4. The respirable or fine particle fraction was determined by using twin stage impinger. The stability study of freeze dried as well as aqueous liposomal systems was carried out at 2-8° and at ambient temperature (28±4°). The freeze dried liposomes showed better fine particle fraction and drug content over the period of six months at ambient as well as at 2-8° storage condition compared to aqueous dispersion of liposomes.

8.
Indian J Pharm Sci ; 72(1): 65-71, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20582192

RESUMO

Serratiopeptidase, an enzyme derived from Serratia marcescences strain E-15 (ATCC 21074), present in the gut wall of the silk worm possesses anti-inflammatory properties, and can prove to be a suitable alternative to commonly used non steroidal antiinflammatory agents. Being sensitive to gastric degradation, serratiopeptidase is conventionally given orally in the form of enteric coated tablet formulations. Topical formulations of serratiopeptidase would be useful to treat local inflammations and may prove to be more effective compared to non steroidal antiinflammatory agents. The present study investigates the feasibility of developing topical preparations of serratiopeptidase in the form of ointments and gels. Excipient compatibility of serratiopeptidase with various excipients and polymers, formulation development, characterization and stability studies have been carried out. Stable formulation was evaluated for anti-inflammatory activity by oxazolone induced ear edema method in mice and allergenic potential by passive cutaneous anaphylaxis.

9.
Indian J Pharm Sci ; 72(4): 442-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21218054

RESUMO

Budesonide is a corticosteroid used by inhalation in the prophylactic management of asthma. However, frequent dosing and adverse effects (local and systemic) remain a major concern in the use of budesonide. Liposomal systems for sustained pulmonary drug delivery have been particularly attractive because of their compatibility with lung surfactant components. In the present investigation, pulmonary liposomal delivery system of budesonide was prepared by film hydration method and evaluated for sustained release. Various parameters were optimized with respect to entrapment efficiency as well as particle size of budesonide liposomes. For better shelf life of budesonide liposomes, they were freeze dried using trehalose as cryoprotectant. The liposomes were characterized for entrapment efficiency, particle size, and surface topography; in vitro drug release was evaluated out in simulated lung fluid at 37° at pH 7.4. The respirable or fine particle fraction was determined by using twin stage impinger. The stability study of freeze dried as well as aqueous liposomal systems was carried out at 2-8° and at ambient temperature (28±40). The freeze dried liposomes showed better fine particle fraction and drug content over the period of six months at ambient as well as at 2-8° storage condition compared to aqueous dispersion of liposomes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...