Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 210(2): 273-85, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26195667

RESUMO

ER-derived COPII-coated vesicles are conventionally targeted to the Golgi. However, during cell stress these vesicles also become a membrane source for autophagosomes, distinct organelles that target cellular components for degradation. How the itinerary of COPII vesicles is coordinated on these pathways remains unknown. Phosphorylation of the COPII coat by casein kinase 1 (CK1), Hrr25, contributes to the directional delivery of ER-derived vesicles to the Golgi. CK1 family members are thought to be constitutively active kinases that are regulated through their subcellular localization. Instead, we show here that the Rab GTPase Ypt1/Rab1 binds and activates Hrr25/CK1δ to spatially regulate its kinase activity. Consistent with a role for COPII vesicles and Hrr25 in membrane traffic and autophagosome biogenesis, hrr25 mutants were defective in ER-Golgi traffic and macroautophagy. These studies are likely to serve as a paradigm for how CK1 kinases act in membrane traffic.


Assuntos
Caseína Quinase I/metabolismo , Retículo Endoplasmático/enzimologia , Complexo de Golgi/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Proteínas rab de Ligação ao GTP/fisiologia , Autofagia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Humanos , Transporte Proteico
2.
Proc Natl Acad Sci U S A ; 110(48): 19432-7, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24218626

RESUMO

The transport protein particle (TRAPP) III complex, comprising the TRAPPI complex and additional subunit Trs85, is an autophagy-specific guanine nucleotide exchange factor for the Rab GTPase Ypt1 that is recruited to the phagophore assembly site when macroautophagy is induced. We present the single-particle electron microscopy structure of TRAPPIII, which reveals that the dome-shaped Trs85 subunit associates primarily with the Trs20 subunit of TRAPPI. We further demonstrate that TRAPPIII binds the coat protein complex (COP) II coat subunit Sec23. The COPII coat facilitates the budding and targeting of ER-derived vesicles with their acceptor compartment. We provide evidence that COPII-coated vesicles and the ER-Golgi fusion machinery are needed for macroautophagy. Our results imply that TRAPPIII binds to COPII vesicles at the phagophore assembly site and that COPII vesicles may provide one of the membrane sources used in autophagosome formation. These events are conserved in yeast to mammals.


Assuntos
Autofagia/fisiologia , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/fisiologia , Modelos Moleculares , Conformação Proteica , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Transporte Vesicular/química , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Células COS , Chlorocebus aethiops , Cromatografia em Gel , Clonagem Molecular , Eletroporação , Escherichia coli , Processamento de Imagem Assistida por Computador , Microscopia Eletrônica , Microscopia de Fluorescência , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
3.
Mol Biol Cell ; 24(17): 2727-38, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864707

RESUMO

Traffic from the endoplasmic reticulum (ER) to the Golgi complex is initiated when the activated form of the GTPase Sar1p recruits the Sec23p-Sec24p complex to ER membranes. The Sec23p-Sec24p complex, which forms the inner shell of the COPII coat, sorts cargo into ER-derived vesicles. The coat inner shell recruits the Sec13p-Sec31p complex, leading to coat polymerization and vesicle budding. Recent studies revealed that the Sec23p subunit sequentially interacts with three different binding partners to direct a COPII vesicle to the Golgi. One of these binding partners is the serine/threonine kinase Hrr25p. Hrr25p phosphorylates the COPII coat, driving the membrane-bound pool into the cytosol. The phosphorylated coat cannot rebind to the ER to initiate a new round of vesicle budding unless it is dephosphorylated. Here we screen all known protein phosphatases in yeast to identify one whose loss of function alters the cellular distribution of COPII coat subunits. This screen identifies the PP2A-like phosphatase Sit4p as a regulator of COPII coat dephosphorylation. Hyperphosphorylated coat subunits accumulate in the sit4Δ mutant in vivo. In vitro, Sit4p dephosphorylates COPII coat subunits. Consistent with a role in coat recycling, Sit4p and its mammalian orthologue, PP6, regulate traffic from the ER to the Golgi complex.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteína Fosfatase 2/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Proteínas de Membrana/metabolismo , Fosforilação , Saccharomyces cerevisiae/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(24): 9800-5, 2013 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-23716696

RESUMO

When macroautophagy, a catabolic process that rids the cells of unwanted proteins, is initiated, 30-60 nm Atg9 vesicles move from the Golgi to the preautophagosomal structure (PAS) to initiate autophagosome formation. The Rab GTPase Ypt1 and its mammalian homolog Rab1 regulate macroautophagy and two other trafficking events: endoplasmic reticulum-Golgi and intra-Golgi traffic. How a Rab, which localizes to three distinct cellular locations, achieves specificity is unknown. Here we show that transport protein particle III (TRAPPIII), a conserved autophagy-specific guanine nucleotide exchange factor for Ypt1/Rab1, is recruited to the PAS by Atg17. We also show that activated Ypt1 recruits the putative membrane curvature sensor Atg1 to the PAS, bringing it into proximity to its binding partner Atg17. Since Atg17 resides at the PAS, these events ensure that Atg1 will specifically localize to the PAS and not to the other compartments where Ypt1 resides. We propose that Ypt1 regulates Atg9 vesicle tethering by modulating the delivery of Atg1 to the PAS. These events appear to be conserved in higher cells.


Assuntos
Fagossomos/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Autofagia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia , Proteínas Relacionadas à Autofagia , Células COS , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Chlorocebus aethiops , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HeLa , Humanos , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Microscopia de Fluorescência , Células NIH 3T3 , Ligação Proteica , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , Proteínas rab1 de Ligação ao GTP/genética , Proteínas rab1 de Ligação ao GTP/metabolismo
5.
Mol Biol Cell ; 22(19): 3634-44, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21813735

RESUMO

The TRAPP complexes are multimeric guanine exchange factors (GEFs) for the Rab GTPase Ypt1p. The three complexes (TRAPPI, TRAPPII, and TRAPPIII) share a core of common subunits required for GEF activity, as well as unique subunits (Trs130p, Trs120p, Trs85p, and Trs65p) that redirect the GEF from the endoplasmic reticulum-Golgi pathway to different cellular locations where TRAPP mediates distinct membrane trafficking events. Roles for three of the four unique TRAPP subunits have been described before; however, the role of the TRAPPII-specific subunit Trs65p has remained elusive. Here we demonstrate that Trs65p directly binds to the C-terminus of the Arf1p exchange factor Gea2p and provide in vivo evidence that this interaction is physiologically relevant. Gea2p and TRAPPII also bind to the yeast orthologue of the γ subunit of the COPI coat complex (Sec21p), a known Arf1p effector. These and previous findings reveal that TRAPPII is part of an Arf1p GEF-effector loop that appears to play a role in recruiting or stabilizing TRAPPII to membranes. In support of this proposal, we show that TRAPPII is more soluble in an arf1Δ mutant.


Assuntos
Fator 1 de Ribosilação do ADP/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/metabolismo , Fator 1 de Ribosilação do ADP/genética , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Regulação Fúngica da Expressão Gênica , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Ligação Proteica , Transporte Proteico/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Solubilidade , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo
6.
Nature ; 473(7346): 181-6, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21532587

RESUMO

How the directionality of vesicle traffic is achieved remains an important unanswered question in cell biology. The Sec23p/Sec24p coat complex sorts the fusion machinery (SNAREs) into vesicles as they bud from the endoplasmic reticulum (ER). Vesicle tethering to the Golgi begins when the tethering factor TRAPPI binds to Sec23p. Where the coat is released and how this event relates to membrane fusion is unknown. Here we use a yeast transport assay to demonstrate that an ER-derived vesicle retains its coat until it reaches the Golgi. A Golgi-associated kinase, Hrr25p (CK1δ orthologue), then phosphorylates the Sec23p/Sec24p complex. Coat phosphorylation and dephosphorylation are needed for vesicle fusion and budding, respectively. Additionally, we show that Sec23p interacts in a sequential manner with different binding partners, including TRAPPI and Hrr25p, to ensure the directionality of ER-Golgi traffic and prevent the back-fusion of a COPII vesicle with the ER. These events are conserved in mammalian cells.


Assuntos
Caseína Quinase I/metabolismo , Complexo de Golgi/metabolismo , Saccharomyces cerevisiae/metabolismo , Animais , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/metabolismo , Ratos , Proteínas SNARE/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo
7.
Proc Natl Acad Sci U S A ; 107(17): 7811-6, 2010 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-20375281

RESUMO

Macroautophagy (hereafter autophagy) is a ubiquitous process in eukaryotic cells that is integrally involved in various aspects of cellular and organismal physiology. The morphological hallmark of autophagy is the formation of double-membrane cytosolic vesicles, autophagosomes, which sequester cytoplasmic cargo and deliver it to the lysosome or vacuole. Thus, autophagy involves dynamic membrane mobilization, yet the source of the lipid that forms the autophagosomes and the mechanism of membrane delivery are poorly characterized. The TRAPP complexes are multimeric guanine nucleotide exchange factors (GEFs) that activate the Rab GTPase Ypt1, which is required for secretion. Here we describe another form of this complex (TRAPPIII) that acts as an autophagy-specific GEF for Ypt1. The Trs85 subunit of the TRAPPIII complex directs this Ypt1 GEF to the phagophore assembly site (PAS) that is involved in autophagosome formation. Consistent with the observation that a Ypt1 GEF is directed to the PAS, we find that Ypt1 is essential for autophagy. This is an example of a Rab GEF that is specifically targeted for canonical autophagosome formation.


Assuntos
Autofagia/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Cromatografia em Gel , Primers do DNA/genética , Immunoblotting , Imunoprecipitação , Microscopia de Fluorescência , Fagossomos/metabolismo
8.
Mol Biol Cell ; 20(19): 4205-15, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19656848

RESUMO

The GTPase Rab1 regulates endoplasmic reticulum-Golgi and early Golgi traffic. The guanine nucleotide exchange factor (GEF) or factors that activate Rab1 at these stages of the secretory pathway are currently unknown. Trs130p is a subunit of the yeast TRAPPII (transport protein particle II) complex, a multisubunit tethering complex that is a GEF for the Rab1 homologue Ypt1p. Here, we show that mammalian Trs130 (mTrs130) is a component of an analogous TRAPP complex in mammalian cells, and we describe for the first time the role that this complex plays in membrane traffic. mTRAPPII is enriched on COPI (Coat Protein I)-coated vesicles and buds, but not Golgi cisternae, and it specifically activates Rab1. In addition, we find that mTRAPPII binds to gamma1COP, a COPI coat adaptor subunit. The depletion of mTrs130 by short hairpin RNA leads to an increase of vesicles in the vicinity of the Golgi and the accumulation of cargo in an early Golgi compartment. We propose that mTRAPPII is a Rab1 GEF that tethers COPI-coated vesicles to early Golgi membranes.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexo I de Proteína do Envoltório/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab1 de Ligação ao GTP/metabolismo , Animais , Células COS , Chlorocebus aethiops , Complexo I de Proteína do Envoltório/genética , Citosol/metabolismo , Citosol/ultraestrutura , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Camundongos , Microscopia Eletrônica , Microscopia de Fluorescência , Células NIH 3T3 , Interferência de RNA , Proteínas de Transporte Vesicular/genética , Proteínas rab1 de Ligação ao GTP/genética
9.
J Mol Biol ; 389(2): 275-88, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19361519

RESUMO

TRAPP complexes, which are large multimeric assemblies that function in membrane traffic, are guanine nucleotide exchange factors (GEFs) that activate the Rab GTPase Ypt1p. Here we measured rate and equilibrium constants that define the interaction of Ypt1p with guanine nucleotide (guanosine 5'-diphosphate and guanosine 5'-triphosphate/guanosine 5'-(beta,gamma-imido)triphosphate) and the core TRAPP subunits required for GEF activity. These parameters allowed us to identify the kinetic and thermodynamic bases by which TRAPP catalyzes nucleotide exchange from Ypt1p. Nucleotide dissociation from Ypt1p is slow (approximately 10(-4) s(-1)) and accelerated >1000-fold by TRAPP. Acceleration of nucleotide exchange by TRAPP occurs via a predominantly Mg(2+)-independent pathway. Thermodynamic linkage analysis indicates that TRAPP weakens nucleotide affinity by <80-fold and vice versa, in contrast to most other characterized GEF systems that weaken nucleotide binding affinities by 4-6 orders of magnitude. The overall net changes in nucleotide binding affinities are small because TRAPP accelerates both nucleotide binding and dissociation from Ypt1p. Weak thermodynamic coupling allows TRAPP, Ypt1p, and nucleotide to exist as a stable ternary complex, analogous to strain-sensing cytoskeleton motors. These results illustrate a novel strategy of guanine nucleotide exchange by TRAPP that is particularly suited for a multifunctional GEF involved in membrane traffic.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Escherichia coli/genética , Nucleotídeos de Guanina/metabolismo , Cinética , Ligação Proteica , Subunidades Proteicas , Termodinâmica , Transdução Genética
10.
Cell ; 133(7): 1202-13, 2008 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-18585354

RESUMO

The multimeric membrane-tethering complexes TRAPPI and TRAPPII share seven subunits, of which four (Bet3p, Bet5p, Trs23p, and Trs31p) are minimally needed to activate the Rab GTPase Ypt1p in an event preceding membrane fusion. Here, we present the structure of a heteropentameric TRAPPI assembly complexed with Ypt1p. We propose that TRAPPI facilitates nucleotide exchange primarily by stabilizing the nucleotide-binding pocket of Ypt1p in an open, solvent-accessible form. Bet3p, Bet5p, and Trs23p interact directly with Ypt1p to stabilize this form, while the C terminus of Bet3p invades the pocket to participate in its remodeling. The Trs31p subunit does not interact directly with the GTPase but allosterically regulates the TRAPPI interface with Ypt1p. Our findings imply that TRAPPII activates Ypt1p by an identical mechanism. This view of a multimeric membrane-tethering assembly complexed with a Rab provides a framework for understanding events preceding membrane fusion at the molecular level.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Complexo de Golgi/metabolismo , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Modelos Moleculares , Mapeamento de Interação de Proteínas , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/química
11.
Mol Endocrinol ; 22(2): 477-84, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17916655

RESUMO

It has been suggested that a thyroglobulin (Tg)-R19K missense mutation may be a newly identified cause of human congenital goiter, which is surprising for this seemingly conservative substitution. Here, we have examined the intracellular fate of recombinant mutant Tg expressed in COS-7 cells. Incorporation of the R19K mutation largely blocked Tg secretion, and this mutant was approximately 90% degraded intracellularly over a 24-h period after synthesis. Before its degradation, the Tg-R19K mutant exhibited abnormally increased association with molecular chaperones BiP, calnexin, and protein disulfide isomerase, and was unable to undergo anterograde advance from the endoplasmic reticulum (ER) through the Golgi complex. Inhibitors of proteasomal proteolysis and ER mannosidase-I both prevented ER-associated degradation of the Tg-R19K mutant and increased its association with ER molecular chaperones. ER quality control around Tg residue 19 is not dependent upon charge but upon side-chain packing, because Tg-R19Q was efficiently secreted. Whereas a Tg mutant truncated after residue 174 folds sufficiently well to escape ER quality control, introduction of the R19K point mutation blocked its secretion. The data indicate that the R19K mutation induces local misfolding in the amino-terminal domain of Tg that has global effects on Tg transport and thyroid hormonogenesis.


Assuntos
Bócio/genética , Mutação , Tireoglobulina/genética , Alcaloides/farmacologia , Substituição de Aminoácidos , Animais , Arginina/genética , Transporte Biológico , Western Blotting , Células COS , Calnexina/metabolismo , Chlorocebus aethiops , Eletroforese em Gel de Poliacrilamida , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Bócio/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Imunoprecipitação , Leupeptinas/farmacologia , Lisina/genética , Camundongos , Chaperonas Moleculares/metabolismo , Ligação Proteica , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Transdução de Sinais/efeitos dos fármacos , Tireoglobulina/química , Tireoglobulina/metabolismo
12.
Nature ; 445(7130): 941-4, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17287728

RESUMO

The budding of endoplasmic reticulum (ER)-derived vesicles is dependent on the COPII coat complex. Coat assembly is initiated when Sar1-GTP recruits the cargo adaptor complex, Sec23/Sec24, by binding to its GTPase-activating protein (GAP) Sec23 (ref. 2). This leads to the capture of transmembrane cargo by Sec24 (refs 3, 4) before the coat is polymerized by the Sec13/Sec31 complex. The initial interaction of a vesicle with its target membrane is mediated by tethers. We report here that in yeast and mammalian cells the tethering complex TRAPPI (ref. 7) binds to the coat subunit Sec23. This event requires the Bet3 subunit. In vitro studies demonstrate that the interaction between Sec23 and Bet3 targets TRAPPI to COPII vesicles to mediate vesicle tethering. We propose that the binding of TRAPPI to Sec23 marks a coated vesicle for fusion with another COPII vesicle or the Golgi apparatus. An implication of these findings is that the intracellular destination of a transport vesicle may be determined in part by its coat and its associated cargo.


Assuntos
Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Retículo Endoplasmático/metabolismo , Proteínas Ativadoras de GTPase , Complexo de Golgi/metabolismo , Fusão de Membrana , Proteínas de Membrana/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
13.
J Biol Chem ; 282(9): 6183-91, 2007 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-17200118

RESUMO

Newly synthesized thyroglobulin (Tg), the secretory glycoprotein that serves as precursor in thyroid hormone synthesis, normally forms transient covalent protein complexes with oxidoreductases of the endoplasmic reticulum (ER). The Tg-G2320R mutation is responsible for congenital hypothyroidism in rdw/rdw rats, in which a lack of secondary thyroid enlargement (goiter) implicates death of thyrocytes as part of disease pathogenesis. We found that mutant Tg-G2320R was retained within the ER with no detectable synthesis of thyroxine, had persistent exposure of free cysteine thiols, and was associated with activated ER stress response but incomplete ER-associated degradation (ERAD). Tg-G2320R associated with multiple ER resident proteins, most notably ERp72, including covalent Tg-ERp72 interactions. In PC Cl3 thyrocytes, inducible overexpression of ERp72 increased the ability of cells to maintain Tg cysteines in a reduced state. Noncovalent interactions of several ER chaperones with newly synthesized Tg-G2320R diminished over time in parallel with ERAD of the mutant protein, yet a small ERAD-resistant Tg fraction remained engaged in covalent association with ERp72 even 2 days post-synthesis. Such covalent protein aggregates may set the stage for apoptotic thyrocyte cell death, preventing thyroid goiter formation in rdw/rdw rats.


Assuntos
Nanismo/etiologia , Glicoproteínas de Membrana/metabolismo , Oxirredutases/metabolismo , Tireoglobulina/genética , Animais , Apoptose , Nanismo/metabolismo , Retículo Endoplasmático , Bócio , Glicoproteínas de Membrana/genética , Mutação de Sentido Incorreto , Ligação Proteica , Transporte Proteico , Ratos , Ratos Mutantes , Tireoglobulina/metabolismo , Glândula Tireoide/citologia
14.
Biochem Biophys Res Commun ; 350(3): 669-77, 2006 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-17027922

RESUMO

Large tethering complexes mediate the initial interaction of a transport vesicle with its target membrane. There are two forms of the multi-subunit tethering complex called TRAPP (TRAPPI and TRAPPII) that tether transport vesicles in different trafficking steps. Understanding TRAPP complex assembly and the protein-protein interactions among the subunits is an important step in elucidating the function of this tether. Here we have used several different approaches to study the protein-protein interactions among the subunits of the TRAPP complexes in both mammalian cells and yeast. Our studies have revealed that the low molecular weight subunits of TRAPP form two subcomplexes in vitro. One subcomplex contains mammalian BET3 (mBET3), mTRS31 and mTRS20, while mBET5 and mTRS23 form a second subcomplex. Furthermore, mBET3 directly interacts with mBET5 in vitro. Our findings also suggest that the TRAPPII-specific subunit, yTrs120p (yeast Trs120p), binds to the periphery of the TRAPPII complex. Although the non-essential TRAPP subunit yTrs33p interacts with yBet3p, yTrs33p is not required for TRAPP complex assembly. Together our findings indicate that BET3 plays an important role in the organization of the TRAPP complexes in both mammalian cells and yeast.


Assuntos
Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Animais , Sítios de Ligação , Camundongos , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...