Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(17): 13261-13270, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38635170

RESUMO

A theoretical construction of an antiferromagnetic polymer multilayered field-effect transistor with polymers stretched between the source and drain contacts was undertaken. The model employed a quantum approach to the on-chain spin-charge distribution, which was self-consistently coupled with the charge distribution controlled by the gate voltage. Contrary to standard field-effect transistors, we found that the current firstly increased superlinearly with the drain voltage, then it achieved the maximum for drain voltages notably lower than the gate voltage, and after that, it decreased with the drain voltage with no saturation. Such effects were coupled with the formation of the current spin-polarization ratio, where the on-chain mobility of respective spin-polarized charges was significantly dependent on the applied drain voltage. These effects arise from competition among the antiferromagnetic coupling, the intra-site spin-dependent Coulomb interaction, and the applied drain and gate voltages, which strongly influence the on-chain spin-charge distribution, varying from an alternating spin configuration to a spin-polarized configuration at both ends of the chain. Substantial control over the magnitude of spin-polarized currents was achieved by manipulating gate and drain voltages, showcasing the feasibility of practical applications in spintronics.

2.
Chemphyschem ; : e202300872, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572936

RESUMO

Diketopyrrolopyrrole (DPP) functionalised with an electron donating unit acts as a donor-acceptor molecules that have shown potential for application in dyes and photovoltaics. These molecules offer broad absorption/emission properties and structure-dependent dynamics. In this study, we used femtosecond pump-probe spectroscopy to investigate the photo-initiated dynamics of thiophene linked DPP derivatives. The thio-DPPs are further functionalised by different electrons withdrawing terminal groups, namely benzoxazole and thiophene dicyanide. The benzoxazole derivative is strongly emissive and directly relaxes directly to the ground state chloroform solution. Thiophene dicyanide derivative exhibits distinct spectral evolution in the first 10 ps, associated with structural and vibronic process. Later, it crosses over to the triplet state with a yield of 20 %. In the solid-state (thin film), we observed a signal that resembles singlet fission. However, upon careful analysis of temperature-dependent steady state absorbance spectra, we conclude that these features are due to laser-induced thermal artifacts. We describe a simplified excited state evolution in the thin film that does not include any additional excited states. These findings have significant implications for the analysis of triplet formation, which plays a major role in the photophysics of many organic materials.

3.
Phys Chem Chem Phys ; 24(42): 25999-26010, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36264055

RESUMO

We have theoretically investigated the feasibility of constructing a spintronic field-effect transistor with the active channel made of a polymer chain with the antiferromagnetic coupling oriented in the source-to-drain direction. We found two different device function regimes controlling the on-chain spin-charge carrier density by tuning the gate voltage. At higher charge carrier densities, the source-drain current linearly increases with decreasing charge carrier densities. In this regime, no polymer spin-polarized current is observed. Upon reaching a critical gate voltage, the current decreases with decreasing charge densities. It is accompanied by the formation of spin-polarized current, generated by an on-chain process, which can be related to spin-charge spatial distribution symmetry breaking caused either by an application of the source-to-drain voltage (higher spin polarization near the drain), or the breakdown of the Peierls dimerization near chain ends. Numerical simulation of the transistor characteristics suggests that the design of a polymer spintronic field-effect transistor is in principle feasible.

4.
Front Chem ; 9: 766121, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35127641

RESUMO

Managing the excited-state decay by a supramolecular structure is a crucial issue for organic photovoltaics. We show that in thin films of metallo-supramolecular polymers made of bis(terpyridine-4'-yl)terthiophenes and Z n 2 + coupling ions, the photoexcited states generated by ultrashort laser pulses at the wavelength of 440 nm decay by the bi-molecular annihilation predominantly controlled by the Förster transfer between singlet states. During this bi-molecular annihilation of singlet states, intermediate hot triplet pairs are formed, which subsequently dissociate into long-living diffusing triplet states. It explains a significant shortening of the triplet state rise time with increasing pump fluence. The diffusion coefficient of triplets showed power-law time dependence, with its exponent proportional to the pump fluence, decreasing thus the diffusivity of triplets.

5.
Chempluschem ; 85(12): 2689-2703, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33332757

RESUMO

The singlet fission (SF) process discovered in bis(thienyl)diketopyrrolopyrroles (TDPPs) can boost their potential for photovoltaics (PV). The crystal structures of TDPP analogs carrying n-hexyl, n-butyl, or 2-(adamant-1-yl)ethyl substituents are similar, but contain increasingly slipped stacked neighbor molecules. The observed SF rate constants, kSF , (7±4), (9±3) and (5.6±1.9) ns-1 for thin films of the three compounds, respectively, are roughly equal, but the triplet quantum yields vary strongly: (120±40), (160±40) and (70±16), respectively. The recent molecular pair model reproduces the near equality of all three kSF at the crystal geometries and identifies all possible pair arrangements in which SF is predicted to be faster, by up to two orders of magnitude. However, it is also clear that the presently non-existent ability to predict the rates of processes competing with SF is pivotal for providing a guide for efforts to optimize the materials for PV.

6.
Polymers (Basel) ; 12(4)2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260492

RESUMO

The paper contributes to the characterization and understanding the mutual interactions of the polar polymer gate dielectric and organic semiconductor in organic field effect transistors (OFETs). It has been shown on the example of cyanoethylated polyvinylalcohol (CEPVA), the high-k dielectric containing strong polar side groups, that the conditions during dielectric layer solidification can significantly affect the charge transport in the semiconductor layer. In contrast to the previous literature we attributed the reduced mobility to the broader distribution of the semiconductor density of states (DOS) due to a significant dipolar disorder in the dielectric layer. The combination of infrared (IR), solid-state nuclear magnetic resonance (NMR) and broadband dielectric (BDS) spectroscopy confirmed the presence of a rigid hydrogen bonds network in the CEPVA polymer. The formation of such network limits the dipolar disorder in the dielectric layer and leads to a significantly narrowed distribution of the density of states (DOS) and, hence, to the higher charge carrier mobility in the OFET active channel made of 6,13-bis(triisopropylsilylethynyl)pentacene. The low temperature drying process of CEPVA dielectric results in the decreased energy disorder of transport states in the adjacent semiconductor layer, which is then similar as in OFETs equipped with the much less polar poly(4-vinylphenol) (PVP). Breaking hydrogen bonds at temperatures around 50 °C results in the gradual disintegration of the stabilizing network and deterioration of the charge transport due to a broader distribution of DOS.

7.
Phys Chem Chem Phys ; 22(15): 8096-8108, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32242554

RESUMO

We present a model of the charge transport in thin film organic field-effect transistors with the active channel made of linear conjugated chains stacked on the substrate with end-on-orientation. The transport was simulated in a box consisting of 25 polymer chains, in which the delocalized quantum orbital eigenstates of the on-chain hole distribution were calculated. The inter-chain charge transfer was solved semi-classically. The full self-consistent distribution of charge density and electric field was determined for various applied gate and source-drain voltages. We found that the dependence of charge mobility on gate voltage is not monotonic: it first increases with increasing gate voltage for a limited interval of the latter, otherwise it decreases with the gate voltage. Next, we found formation of the second resonant peak for higher gate voltages. The mobility dependence on the gate voltage confirmed that the current flowing through the active semiconductor layer should be described not only as the hole transfer between adjacent repeat units of the neighbouring chains, but also as the transfer of coherences among on-chain repeat units. The presented model can also give a new insight into the charge transport in organic field-effect transistors with a novel vertical architecture.

8.
J Nanosci Nanotechnol ; 18(2): 1164-1168, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448552

RESUMO

The localized surface plasmon (LSP) photophysical phenomenon occurring in metal nanostructures is often presented as a way to effectively couple light into sub-wavelength-scale photovoltaic devices, which would otherwise suffer from a weak light absorption. The simultaneous complementary effect of localized optical field depletion receives far less attention. We studied a system consisting of a planar gold nanoparticles array (AuNP) deposited at the surface of a semiconducting polymer thin film (P3HT). By comparing the UV-vis spectra of P3HT with and without the AuNP array, we have estimated that the AuNPs screen the optical absorption in the interfacial layer of about 3.8 nm effective thickness due the near-field depletion effect. It suggests that the AuNP array may be used to practically "hide" a thin semiconductor layer, e.g., in order to tune the perceived color of the photovoltaic cell embedded in architecture, or in wearable devices.

9.
Phys Chem Chem Phys ; 20(4): 2308-2319, 2018 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-29303181

RESUMO

We developed a new methodology for determining charge concentration dependent mobility from organic field-effect transistor (OFET) characteristics, applicable for semiconducting polymers with structural and energy disorder. We show that basic formulae recommended by the "IEEE Standard for Test Methods for the Characterization of Organic Transistors and Materials" for the determination of the field-effect mobility as obtained from the slope ISD1/2vs. VSG (in the saturation regime) or from the transconductance dISD/dVSG (in the linear regime) are not suitable for materials with concentration dependent charge carrier mobility. We propose alternative expressions, which can be directly analytically derived from the drift-diffusion equation with the mobility explicitly dependent on the charge concentration. This methodology for mobility determination was used for analysis of the experimental data obtained for a poly(3-hexylthiophene)-based OFET with the bottom gate-bottom SD electrode configuration.

10.
Phys Chem Chem Phys ; 19(16): 10562-10570, 2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28393953

RESUMO

Localized surface plasmon (LSP) photophysical phenomena occurring in metal nanostructures are often presented as a method to effectively couple light into photovoltaic devices of sub-wavelength-scale thickness. However, the excitation of LSP is also associated with rapid energy dissipation leading to local heating, which affects the excitation energy pathway. We studied a system consisting of a planar gold nanoparticle (AuNP) array deposited at the surface of a semiconducting polymer thin film (P3HT). We observed heat transfer from laser pulse excited AuNPs into the P3HT, which was evidenced as a long-living thermochromic effect on transient optical absorption. By modeling of the ultrafast kinetics of exciton population evolution, we determined that their decay was caused by their mutual annihilation. The decay rate was controlled by a phonon-assisted one-dimensional diffusion mechanism with a diffusion constant of 2.2 nm2 ps-1. The transferred heat resulted in an increase of the diffusion constant by a factor of almost 2, compared to the control system of P3HT without AuNPs. These results are of practical use for the design of plasmon-enhanced optoelectronic devices.

11.
Phys Chem Chem Phys ; 19(11): 7760-7771, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28262858

RESUMO

We introduced a molecular-scale description of disordered on-chain charge carrier states into a theoretical model of the charge carrier transport in polymer semiconductors. The presented model combines the quantum mechanical approach with a semi-classical solution of the inter-chain charge hopping. Our model takes into account the significant local anisotropy of the charge carrier mobility present in linear conjugated polymers. Contrary to the models based on the effective medium approximation, our approach allowed avoiding artefacts in the calculated concentration dependence of the mobility originated in its problematic configurational averaging. Monte Carlo numerical calculations show that, depending on the degree of the energetic and structural disorder, the charge carrier mobility increases significantly with increasing charge concentration due to trap filling. At high charge carrier concentrations, the effect of the energetic disorder disappears and the mobility decreases slightly due to the lower density of unoccupied states available for the hopping transport. It could explain the experimentally observed mobility degradation in organic field-effect transistors at high gate voltage.

12.
J Phys Chem A ; 119(24): 6203-14, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25913085

RESUMO

α,ω-Bis(terpyridyl)oligothiophenes spontaneously assemble with Zn(II) ions giving conjugated constitutional dynamic polymers (dynamers) of the metallo-supramolecular class, which potentially might be utilized in optoelectronics. Their photophysical properties, which are of great importance in this field of application, are strongly influenced by the dynamic morphology. It was assessed in this study by using ultrafast pump-probe optical absorption spectroscopy. We identified and characterized relaxation processes running in photoexcited molecules of these oligomers and dynamers and show impacts of disturbed coplanarity of adjacent rings (twisting the thiophene-thiophene and thiophene-terpyridyl bonds by attached hexyl side groups) and Zn(II) ion couplers on these processes. Major effects are seen in the time constants of rotational relaxation, intersystem crossing, and de-excitation lifetimes. The photoexcited states formed on different repeating units within the same dynamer chain do not interact with each other even at very high excitation density. The method is presented that allows determining the equilibrium fraction of unbound oligothiophene species in a dynamer solution, from which otherwise hardly accessible values of the average degree of polymerization of constitutionally dynamic chains in solution can be estimated.

13.
J Phys Chem A ; 118(29): 5419-26, 2014 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-24968193

RESUMO

Nickel phthalocyanine (NiPc) complexes are known to show a rapid nonradiative deactivation of the photoexcited state through the internal conversion. This could be exploited in practical applications, such as photoprotection and photodynamic therapy. The butoxy substitution of NiPc plays an important role for drug delivery but also greatly influences its photophysics. We prepared novel peripherally substituted 2,3,9,10,16,17,23,24-octabutoxy nickel(II) phthalocyanine and characterized the deactivation pathway of its photoexcited state in solution by femtosecond transient absorption spectroscopy and quantum chemical calculations. We bring experimental evidence for the kinetic model, in which the photoexcitation evolves in two independent branches. In the first branch, assigned to the monomer, it undergoes ultrafast intersystem crossing to a triplet state, which subsequently decays to the ground state through a pathway involving lower-lying triplet states, with a ground-state recovery lifetime of 814 ps. It is about three-times longer than the lifetime published for unsubstituted NiPc. In the second branch, the photoexcitation decayed to a triplet state with an orders of magnitude longer lifetime, with the quantum yield of about 4%. This state showed spectral features of J-aggregates. These findings are important for the applications that rely on singlet oxygen formation or fast nonradiative deactivation of the excited state.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...