Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 26(4)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562272

RESUMO

For many antibacterial polymer fibres, especially for those with natural functional additives, the antibacterial response might not last over time. Moreover, the mechanical performance of polymeric fibres degrades significantly during the intended operation, such as usage in textile and industrial filter applications. The degradation process and overall ageing can lead to emitted volatile organic compounds (VOCs). This work focused on the usage of pine rosin as natural antibacterial chemical and analysed the weathering of melt-spun polyethylene (PE) and poly lactic acid (PLA) polyfilaments. A selected copolymer surfactant, as an additional chemical, was studied to better integrate rosin with the molecular structure of the plastics. The results reveal that a high 20 w-% of rosin content can be obtained by surfactant addition in non-oriented PE and PLA melt-spun polyfilaments. According to the VOC analysis, interestingly, the total emissions from the melt-spun PE and PLA fibres were lower for rosin-modified (10 w-%) fibres and when analysed below 60 ℃. The PE fibres of the polyfilaments were found to be clearly more durable in terms of the entire weathering study, i.e., five weeks of ultraviolet radiation, thermal ageing and standard washing. The antibacterial response against Gram-positive Staphylococcus aureus by the rosin-containing fibres was determined to be at the same level (decrease of 3-5 logs cfu/mL) as when using 1.0 w-% of commercial silver-containing antimicrobial. For the PE polyfilaments with rosin (10 w-%), full killing response (decrease of 3-5 logs cfu/mL) remained after four weeks of accelerated ageing at 60 ℃.


Assuntos
Antibacterianos/química , Polietileno/química , Resinas Vegetais/química , Compostos Orgânicos Voláteis/química , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Pinus/química , Plásticos/química , Plásticos/farmacologia , Poliésteres/química , Polietileno/farmacologia , Polímeros/química , Polímeros/farmacologia , Prata/química , Staphylococcus aureus/efeitos dos fármacos , Têxteis/análise , Compostos Orgânicos Voláteis/farmacologia
2.
Microbiology (Reading) ; 162(11): 1895-1903, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27655355

RESUMO

Fungal growth on indoor surfaces can decay building materials and release hazardous substances that affect indoor air quality. Despite the numerous methods available for growth determination, there is no commonly accepted standard. The goal of this study was to compare five different assay methods for the measurement of fungal growth: cultivation, MS-based determination of ergosterol, beta-N-acetylhexosaminidase activity, quantitative PCR and microscopic spore counting. Three fungal species (Aspergillus puulaauensis, Cladosporium montecillanum and Penicillium polonicum) were grown on three different building materials (two types of acoustic board and wood). Fungal load was determined at different time points. Results from all of the methods, except the spore count, showed good correlation between each other (r=0.6-0.8). Results obtained with the cultivation method had the highest variability among replicate samples (65 %), making it the least reproducible in repeated measurements. However, it also displayed the highest variability in incubation times (149 %), indicating its suitability for detecting transient changes in the physiological state of cells. Similar to the cultivation method, quantitative PCR correlated well with the other methods and had high variability in incubation times but had lower variability among replicate samples. Ergosterol and beta-N-acetylhexosaminidase enzyme activity seemed to be the methods least dependent on the physiological state of the cells. Varying growth dynamics were observed for different species over time with the different assay methods. Each one of the tests provides a different perspective on fungal quantification due to its specific responses to the various stages of fungal growth.


Assuntos
Materiais de Construção/microbiologia , Fungos/crescimento & desenvolvimento , Micologia/métodos , Sobrevivência Celular , Contagem de Colônia Microbiana , Materiais de Construção/análise , Fungos/genética , Micologia/instrumentação , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
3.
Sci Total Environ ; 547: 234-243, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26789361

RESUMO

Intact spores and submicrometer size fragments are released from moldy building materials during growth and sporulation. It is unclear whether all fragments originate from fungal growth or if small pieces of building materials are also aerosolized as a result of microbial decomposition. In addition, particles may be formed through nucleation from secondary metabolites of fungi, such as microbial volatile organic compounds (MVOCs). In this study, we used the elemental composition of particles to characterize the origin of submicrometer fragments released from materials contaminated by fungi. Particles from three fungal species (Aspergillus versicolor, Cladosporium cladosporioides and Penicillium brevicompactum), grown on agar, wood and gypsum board were aerosolized using the Fungal Spore Source Strength Tester (FSSST) at three air velocities (5, 16 and 27 m/s). Released spores (optical size, dp ≥ 0.8 µm) and fragments (dp ≤ 0.8 µm) were counted using direct-reading optical aerosol instruments. Particles were also collected on filters, and their morphology and elemental composition analyzed using scanning electron microscopes (SEMs) coupled with an Energy-Dispersive X-ray spectroscopy (EDX). Among the studied factors, air velocity resulted in the most consistent trends in the release of fungal particles. Total concentrations of both fragments and spores increased with an increase in air velocity for all species whereas fragment-spore (F/S) ratios decreased. EDX analysis showed common elements, such as C, O, Mg and Ca, for blank material samples and fungal growth. However, N and P were exclusive to the fungal growth, and therefore were used to differentiate biological fragments from non-biological ones. Our results indicated that majority of fragments contained N and P. Because we observed increased release of fragments with increased air velocities, nucleation of MVOCs was likely not a relevant process in the formation of fungal fragments. Based on elemental composition, most fragments originated from fungi, but also fragments from growth material were detected.


Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Fungos , Esporos Fúngicos , Materiais de Construção/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...