Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Cyst Fibros ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38388235

RESUMO

BACKGROUND: In 2017, the US Food and Drug Administration initiated expansion of drug labels for the treatment of cystic fibrosis (CF) to include CF transmembrane conductance regulator (CFTR) gene variants based on in vitro functional studies. This study aims to identify CFTR variants that result in increased chloride (Cl-) transport function by the CFTR protein after treatment with the CFTR modulator combination elexacaftor/tezacaftor/ivacaftor (ELX/TEZ/IVA). These data may benefit people with CF (pwCF) who are not currently eligible for modulator therapies. METHODS: Plasmid DNA encoding 655 CFTR variants and wild-type (WT) CFTR were transfected into Fisher Rat Thyroid cells that do not natively express CFTR. After 24 h of incubation with control or TEZ and ELX, and acute addition of IVA, CFTR function was assessed using the transepithelial current clamp conductance assay. Each variant's forskolin/cAMP-induced baseline Cl- transport activity, responsiveness to IVA alone, and responsiveness to the TEZ/ELX/IVA combination were measured in three different laboratories. Western blots were conducted to evaluate CFTR protein maturation and complement the functional data. RESULTS AND CONCLUSIONS: 253 variants not currently approved for CFTR modulator therapy showed low baseline activity (<10 % of normal CFTR Cl- transport activity). For 152 of these variants, treatment with ELX/TEZ/IVA improved the Cl- transport activity by ≥10 % of normal CFTR function, which is suggestive of clinical benefit. ELX/TEZ/IVA increased CFTR function by ≥10 percentage points for an additional 140 unapproved variants with ≥10 % but <50 % of normal CFTR function at baseline. These findings significantly expand the number of rare CFTR variants for which ELX/TEZ/IVA treatment should result in clinical benefit.

2.
Nat Commun ; 13(1): 2344, 2022 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-35487895

RESUMO

Approximately 10% of cystic fibrosis patients harbor nonsense mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene which can generate nonsense codons in the CFTR mRNA and subsequently activate the nonsense-mediated decay (NMD) pathway resulting in rapid mRNA degradation. However, it is not known which NMD branches govern the decay of CFTR mRNAs containing nonsense codons. Here we utilize antisense oligonucleotides targeting NMD factors to evaluate the regulation of nonsense codon-containing CFTR mRNAs by the NMD pathway. We observe that CFTR mRNAs with nonsense codons G542X, R1162X, and W1282X, but not Y122X, require UPF2 and UPF3 for NMD. Furthermore, we demonstrate that all evaluated CFTR mRNAs harboring nonsense codons are degraded by the SMG6-mediated endonucleolytic pathway rather than the SMG5-SMG7-mediated exonucleolytic pathway. Finally, we show that upregulation of all evaluated CFTR mRNAs with nonsense codons by NMD pathway inhibition improves outcomes of translational readthrough therapy.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística , Fibrose Cística , Endorribonucleases/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido , Proteínas de Transporte/metabolismo , Códon sem Sentido , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Nat Commun ; 12(1): 4358, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34272367

RESUMO

Premature termination codons (PTCs) prevent translation of a full-length protein and trigger nonsense-mediated mRNA decay (NMD). Nonsense suppression (also termed readthrough) therapy restores protein function by selectively suppressing translation termination at PTCs. Poor efficacy of current readthrough agents prompted us to search for better compounds. An NMD-sensitive NanoLuc readthrough reporter was used to screen 771,345 compounds. Among the 180 compounds identified with readthrough activity, SRI-37240 and its more potent derivative SRI-41315, induce a prolonged pause at stop codons and suppress PTCs associated with cystic fibrosis in immortalized and primary human bronchial epithelial cells, restoring CFTR expression and function. SRI-41315 suppresses PTCs by reducing the abundance of the termination factor eRF1. SRI-41315 also potentiates aminoglycoside-mediated readthrough, leading to synergistic increases in CFTR activity. Combining readthrough agents that target distinct components of the translation machinery is a promising treatment strategy for diseases caused by PTCs.


Assuntos
Códon sem Sentido/antagonistas & inibidores , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/efeitos dos fármacos , Degradação do RNAm Mediada por Códon sem Sentido , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Fatores de Terminação de Peptídeos/metabolismo , Aminoglicosídeos/metabolismo , Códon sem Sentido/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Genes Reporter , Gentamicinas/farmacologia , Células HEK293 , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Fatores de Terminação de Peptídeos/genética , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Interferência de RNA , Ribossomos/metabolismo , Relação Estrutura-Atividade
4.
Nat Med ; 27(5): 806-814, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33958799

RESUMO

Cystic fibrosis (CF) is a lethal autosomal recessive disorder that afflicts more than 70,000 people. People with CF experience multi-organ dysfunction resulting from aberrant electrolyte transport across polarized epithelia due to mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CF-related lung disease is by far the most important determinant of morbidity and mortality. Here we report results from a multi-institute consortium in which single-cell transcriptomics were applied to define disease-related changes by comparing the proximal airway of CF donors (n = 19) undergoing transplantation for end-stage lung disease with that of previously healthy lung donors (n = 19). Disease-dependent differences observed include an overabundance of epithelial cells transitioning to specialized ciliated and secretory cell subsets coupled with an unexpected decrease in cycling basal cells. Our study yields a molecular atlas of the proximal airway epithelium that will provide insights for the development of new targeted therapies for CF airway disease.


Assuntos
Fibrose Cística/genética , Fibrose Cística/patologia , Células Epiteliais/citologia , Pulmão/patologia , Mucosa Respiratória/patologia , Diferenciação Celular/genética , Cílios/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Humanos , Análise de Célula Única/métodos , Transcriptoma/genética
5.
Nat Commun ; 11(1): 1979, 2020 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-32332735

RESUMO

CRISPR-Cas9-associated base editing is a promising tool to correct pathogenic single nucleotide mutations in research or therapeutic settings. Efficient base editing requires cellular exposure to levels of base editors that can be difficult to attain in hard-to-transfect cells or in vivo. Here we engineer a chemically modified mRNA-encoded adenine base editor that mediates robust editing at various cellular genomic sites together with moderately modified guide RNA, and show its therapeutic potential in correcting pathogenic single nucleotide mutations in cell and animal models of diseases. The optimized chemical modifications of adenine base editor mRNA and guide RNA expand the applicability of CRISPR-associated gene editing tools in vitro and in vivo.


Assuntos
Adenina/química , Sistemas CRISPR-Cas , RNA Guia de Cinetoplastídeos/química , RNA Mensageiro/química , Alelos , Animais , Linhagem Celular , Códon , Códon sem Sentido , Fibrose Cística/patologia , Edição de Genes , Células HEK293 , Humanos , Camundongos , Mutação , Nucleotídeos , Fenótipo , Plasmídeos , Transfecção , Uridina/análogos & derivados , Uridina/química
6.
J Cyst Fibros ; 19 Suppl 1: S1-S4, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932104

RESUMO

The revolution in cystic fibrosis treatment is rooted in tremendous interdisciplinary research efforts, which led in recent years to significant progress in precision medicine. Since 2004, a key annual event for the CF research community is the ECFS Basic Science Conference (BSC), which is an ideal venue for deep discussions around topical subjects and fosters basic CF-related research in Europe and beyond. This special issue explores topics that were featured at the 16th ECFS BSC, held in Dubrovnik in March 2019 and provides an overview of recent progress in various fields for understanding disease mechanisms, developing relevant cell and animal models and designing breakthrough therapies. The special issue also identifies a number of the key issues and challenges in the future development of transformative therapies for all patients with CF.


Assuntos
Pesquisa Biomédica , Fibrose Cística , Pesquisa Biomédica/métodos , Pesquisa Biomédica/organização & administração , Congressos como Assunto , Fibrose Cística/genética , Fibrose Cística/fisiopatologia , Fibrose Cística/terapia , Humanos , Comunicação Interdisciplinar , Medicina de Precisão/métodos
7.
Am J Respir Cell Mol Biol ; 61(3): 290-300, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30836009

RESUMO

The recessive genetic disease cystic fibrosis (CF) is caused by loss-of-function mutations in the CFTR (CF transmembrane conductance regulator) gene. Approximately 10% of patients with CF have at least one allele with a nonsense mutation in CFTR. Nonsense mutations generate premature termination codons that can subject mRNA transcripts to rapid degradation through the nonsense-mediated mRNA decay (NMD) pathway. Currently, there are no approved therapies that specifically target nonsense mutations in CFTR. Here, we identified antisense oligonucleotides (ASOs) that target the NMD factor SMG1 to inhibit the NMD pathway, and determined their effects on the W1282X CFTR mutation. First, we developed and validated two in vitro models of the W1282X CFTR mutation. Next, we treated these cells with antisense oligonucleotides to inhibit NMD and measured the effects of these treatments on W1282X expression and function. SMG1-ASO-mediated NMD inhibition upregulated the RNA, protein, and surface-localized protein expression of the truncated W1282X gene product. Additionally, these ASOs increased the CFTR chloride channel function in cells homozygous for the W1282X mutation. Our approach suggests a new therapeutic strategy for patients harboring nonsense mutations and may be beneficial as a single agent in patients with CF and the W1282X mutation.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , RNA/genética , Aminofenóis/farmacologia , Fibrose Cística/tratamento farmacológico , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Homozigoto , Humanos , Mutação/genética , Quinolonas/farmacologia , RNA/metabolismo
8.
J Cyst Fibros ; 18(1): 22-34, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29934203

RESUMO

BACKGROUND: New drugs that improve the function of the cystic fibrosis transmembrane conductance regulator (CFTR) protein with discreet disease-causing variants have been successfully developed for cystic fibrosis (CF) patients. Preclinical model systems have played a critical role in this process, and have the potential to inform researchers and CF healthcare providers regarding the nature of defects in rare CFTR variants, and to potentially support use of modulator therapies in new populations. METHODS: The Cystic Fibrosis Foundation (CFF) assembled a workshop of international experts to discuss the use of preclinical model systems to examine the nature of CF-causing variants in CFTR and the role of in vitro CFTR modulator testing to inform in vivo modulator use. The theme of the workshop was centered on CFTR theratyping, a term that encompasses the use of CFTR modulators to define defects in CFTR in vitro, with application to both common and rare CFTR variants. RESULTS: Several preclinical model systems were identified in various stages of maturity, ranging from the expression of CFTR variant cDNA in stable cell lines to examination of cells derived from CF patients, including the gastrointestinal tract, the respiratory tree, and the blood. Common themes included the ongoing need for standardization, validation, and defining the predictive capacity of data derived from model systems to estimate clinical outcomes from modulator-treated CF patients. CONCLUSIONS: CFTR modulator theratyping is a novel and rapidly evolving field that has the potential to identify rare CFTR variants that are responsive to approved drugs or drugs in development.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , DNA/genética , Terapia Genética/métodos , Mutação , Fibrose Cística/metabolismo , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Análise Mutacional de DNA , Humanos
9.
J Cyst Fibros ; 18(4): 476-483, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30563749

RESUMO

BACKGROUND: Assessment of approved drugs and developmental drug candidates for rare cystic fibrosis (CF)-causing variants of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) requires abundant material from relevant models. METHODS: Isogenic cell lines harboring CFTR variants in the native genomic context were created through the development and utilization of a footprint-less, CRISPR/Cas9 gene editing pipeline in 16HBE14o- immortalized bronchial epithelial cells. RESULTS: Isogenic, homozygous cell lines for three CFTR variants (F508del and the two most common CF-causing nonsense variants, G542X and W1282X) were established and characterized. The F508del model recapitulates the known molecular pathology and pharmacology. The two models of nonsense variants (G542X and W1282X) are sensitive to Nonsense Mediated mRNA Decay (NMD) and responsive to reference compounds that inhibit NMD and promote ribosomal readthrough. CONCLUSIONS: We present a versatile, efficient gene editing pipeline that can be used to create CFTR variants in the native genomic context and the utilization of this pipeline to create homozygous cell models for the CF-causing variants F508del, G542X, and W1282X. The resulting cell lines provide a virtually unlimited source of material with specific pathogenic mutations that can be used in a variety of assays, including functional assays.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Células Epiteliais , Modelos Biológicos , Mucosa Respiratória/citologia , Linhagem Celular , Edição de Genes , Variação Genética , Humanos , Pulmão , Mutação
10.
Nature ; 560(7718): 319-324, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069044

RESUMO

The airways of the lung are the primary sites of disease in asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1+ pulmonary ionocyte; functional variations in club cells based on their location; a distinct cell type in high turnover squamous epithelial structures that we term 'hillocks'; and disease-relevant subsets of tuft and goblet cells. We developed 'pulse-seq', combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that are characteristic of cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease.


Assuntos
Diferenciação Celular/genética , Linhagem da Célula/genética , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/genética , Células Epiteliais/metabolismo , Animais , Asma/genética , Células Epiteliais/citologia , Feminino , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Células Caliciformes/citologia , Células Caliciformes/metabolismo , Humanos , Pulmão/citologia , Masculino , Camundongos , Análise de Sequência de RNA , Análise de Célula Única , Traqueia/citologia
11.
Br J Pharmacol ; 175(7): 1017-1038, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29318594

RESUMO

BACKGROUND AND PURPOSE: Rescue of F508del-cystic fibrosis (CF) transmembrane conductance regulator (CFTR), the most common CF mutation, requires small molecules that overcome protein processing, stability and channel gating defects. Here, we investigate F508del-CFTR rescue by CFFT-004, a small molecule designed to independently correct protein processing and channel gating defects. EXPERIMENTAL APPROACH: Using CFTR-expressing recombinant cells and CF patient-derived bronchial epithelial cells, we studied CFTR expression by Western blotting and channel gating and stability with the patch-clamp and Ussing chamber techniques. KEY RESULTS: Chronic treatment with CFFT-004 improved modestly F508del-CFTR processing, but not its plasma membrane stability. By contrast, CFFT-004 rescued F508del-CFTR channel gating better than C18, an analogue of the clinically used CFTR corrector lumacaftor. Subsequent acute addition of CFFT-004, but not C18, potentiated F508del-CFTR channel gating. However, CFFT-004 was without effect on A561E-CFTR, a CF mutation with a comparable mechanism of CFTR dysfunction as F508del-CFTR. To investigate the mechanism of action of CFFT-004, we used F508del-CFTR revertant mutations. Potentiation by CFFT-004 was unaffected by revertant mutations, but correction was abolished by the revertant mutation G550E. These data suggest that correction, but not potentiation, by CFFT-004 might involve nucleotide-binding domain 1 of CFTR. CONCLUSIONS AND IMPLICATIONS: CFFT-004 is a dual-acting small molecule with independent corrector and potentiator activities that partially rescues F508del-CFTR in recombinant cells and native airway epithelia. The limited efficacy and potency of CFFT-004 suggests that combinations of small molecules targeting different defects in F508del-CFTR might be a more effective therapeutic strategy than a single agent.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Animais , Linhagem Celular , Membrana Celular/fisiologia , Células Cultivadas , Cricetinae , Células Epiteliais/fisiologia , Humanos , Ativação do Canal Iônico , Camundongos , Processamento de Proteína Pós-Traducional , Estabilidade Proteica
12.
SLAS Technol ; 22(3): 315-324, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28376702

RESUMO

Cystic fibrosis (CF) is a hereditary disease caused by mutations in the gene coding for the cystic fibrosis transmembrane conductance regulator (CFTR). A large number of nearly 2000 reported mutations, including the premature termination codon (PTC) mutations, urgently require new and personalized medicines. We have developed cell-based assays for readthrough modulators of CFTR PTC mutations (or nonsense mutation suppressors), based on the trafficking and surface expression of CFTR. Approximately 85,000 compounds have been screened for two PTC mutations (Y122X and W1282X). The hit rates at the threshold of 50% greater than vehicle response are 2% and 1.4% for CFTR Y122X and CFTR W1282X, respectively. The overlap of the two hit sets at this stringent hit threshold is relatively small. Only ~28% of the hits from the W1282X screen were also hits in the Y122X screen. The overlap increases to ~50% if compounds are included that in the second screen achieve only a less stringent hit criterion, that is, horseradish peroxidase (HRP) activity greater than three standard deviations above the mean of the vehicle. Our data suggest that personalization may not need to address individual genotypes, but that patients with different CFTR PTC mutations could benefit from the same medicines.


Assuntos
Códon sem Sentido , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Transcrição Gênica/efeitos dos fármacos , Técnicas Citológicas/métodos , Humanos
13.
Cell Stem Cell ; 19(2): 217-231, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27320041

RESUMO

Functional modeling of many adult epithelia is limited by the difficulty in maintaining relevant stem cell populations in culture. Here, we show that dual inhibition of SMAD signaling pathways enables robust expansion of primary epithelial basal cell populations. We find that TGFß/BMP/SMAD pathway signaling is strongly activated in luminal and suprabasal cells of several epithelia, but suppressed in p63+ basal cells. In airway epithelium, SMAD signaling promotes differentiation, and its inhibition leads to stem cell hyperplasia. Using dual SMAD signaling inhibition in a feeder-free culture system, we have been able to expand airway basal stem cells from multiple species. Expanded cells can produce functional airway epithelium physiologically responsive to clinically relevant drugs, such as CFTR modulators. This approach is effective for the clonal expansion of single human cells and for basal cell populations from epithelial tissues from all three germ layers and therefore may be broadly applicable for modeling of epithelia.


Assuntos
Células Epiteliais/citologia , Células Epiteliais/metabolismo , Transdução de Sinais , Proteínas Smad/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Autorrenovação Celular , Senescência Celular , Cílios/metabolismo , Epitélio/metabolismo , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo , Pulmão/citologia , Camundongos Endogâmicos C57BL , Muco/metabolismo , Telômero/metabolismo
14.
Am J Respir Crit Care Med ; 194(9): 1092-1103, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27104944

RESUMO

RATIONALE: Premature termination codons (PTCs) in the cystic fibrosis transmembrane conductance regulator (CFTR) gene cause cystic fibrosis (CF). Several agents are known to suppress PTCs but are poorly efficacious or toxic. OBJECTIVES: To determine whether there are clinically available agents that elicit translational readthrough and improve CFTR function sufficient to confer therapeutic benefit to patients with CF with PTCs. METHODS: Two independent screens, firefly luciferase and CFTR-mediated transepithelial chloride conductance assay, were performed on a library of 1,600 clinically approved compounds using fisher rat thyroid cells stably transfected with stop codons. Select agents were further evaluated using secondary screening assays including short circuit current analysis on primary cells from patients with CF. In addition, the effect of CFTR modulators (ivacaftor) was tested in combination with the most efficacious agents. MEASUREMENTS AND MAIN RESULTS: From the primary screen, 48 agents were selected as potentially active. Following confirmatory tests in the transepithelial chloride conductance assay and prioritizing agents based on favorable pharmacologic properties, eight agents were advanced for secondary screening. Ivacaftor significantly increased short circuit current following forskolin stimulation in cells treated with pyranoradine tetraphosphate, potassium p-aminobenzoate, and escin as compared with vehicle control. Escin, an herbal agent, consistently induced readthrough activity as demonstrated by enhanced CFTR expression and function in vitro. CONCLUSIONS: Clinically approved drugs identified as potential readthrough agents, in combination with ivacaftor, may induce nonsense suppression to restore therapeutic levels of CFTR function. One or more agents may be suitable to advance to human testing.


Assuntos
Códon sem Sentido/efeitos dos fármacos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Fibrose Cística/tratamento farmacológico , Descoberta de Drogas/métodos , Animais , Linhagem Celular , Códon sem Sentido/genética , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Humanos , Luciferases/metabolismo , Ratos Endogâmicos F344 , Reação em Cadeia da Polimerase em Tempo Real
15.
J Biol Chem ; 287(41): 34264-72, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22902621

RESUMO

Protein homeostasis depends on a balance of translation, folding, and degradation. Here, we demonstrate that mild inhibition of translation results in a dramatic and disproportional reduction in production of misfolded polypeptides in mammalian cells, suggesting an improved folding of newly synthesized proteins. Indeed, inhibition of translation elongation, which slightly attenuated levels of a copepod GFP mutant protein, significantly enhanced its function. In contrast, inhibition of translation initiation had minimal effects on copepod GFP folding. On the other hand, mild suppression of either translation elongation or initiation corrected folding defects of the disease-associated cystic fibrosis transmembrane conductance regulator mutant F508del. We propose that modulation of translation can be used as a novel approach to improve overall proteostasis in mammalian cells, as well as functions of disease-associated mutant proteins with folding deficiencies.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/biossíntese , Proteínas de Fluorescência Verde/biossíntese , Modelos Biológicos , Mutação , Elongação Traducional da Cadeia Peptídica , Dobramento de Proteína , Animais , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Ratos
16.
J Biol Chem ; 287(34): 28480-94, 2012 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-22722932

RESUMO

Deletion of Phe-508 (F508del) in the first nucleotide binding domain (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) leads to defects in folding and channel gating. NMR data on human F508del NBD1 indicate that an H620Q mutant, shown to increase channel open probability, and the dual corrector/potentiator CFFT-001 similarly disrupt interactions between ß-strands S3, S9, and S10 and the C-terminal helices H8 and H9, shifting a preexisting conformational equilibrium from helix to coil. CFFT-001 appears to interact with ß-strands S3/S9/S10, consistent with docking simulations. Decreases in T(m) from differential scanning calorimetry with H620Q or CFFT-001 suggest direct compound binding to a less thermostable state of NBD1. We hypothesize that, in full-length CFTR, shifting the conformational equilibrium to reduce H8/H9 interactions with the uniquely conserved strands S9/S10 facilitates release of the regulatory region from the NBD dimerization interface to promote dimerization and thereby increase channel open probability. These studies enabled by our NMR assignments for F508del NBD1 provide a window into the conformational fluctuations within CFTR that may regulate function and contribute to folding energetics.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Dobramento de Proteína , Multimerização Proteica , Sequência de Aminoácidos , Substituição de Aminoácidos , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Humanos , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Deleção de Sequência
17.
J Comput Aided Mol Des ; 24(12): 971-91, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20976528

RESUMO

Folding correctors of F508del-CFTR were discovered by in silico structure-based screening utilizing homology models of CFTR. The intracellular segment of CFTR was modeled and three cavities were identified at inter-domain interfaces: (1) Interface between the two Nucleotide Binding Domains (NBDs); (2) Interface between NBD1 and Intracellular Loop (ICL) 4, in the region of the F508 deletion; (3) multi-domain interface between NBD1:2:ICL1:2:4. We hypothesized that compounds binding at these interfaces may improve the stability of the protein, potentially affecting the folding yield or surface stability. In silico structure-based screening was performed at the putative binding-sites and a total of 496 candidate compounds from all three sites were tested in functional assays. A total of 15 compounds, representing diverse chemotypes, were identified as F508del folding correctors. This corresponds to a 3% hit rate, ~tenfold higher than hit rates obtained in corresponding high-throughput screening campaigns. The same binding sites also yielded potentiators and, most notably, compounds with a dual corrector-potentiator activity (dual-acting). Compounds harboring both activity types may prove to be better leads for the development of CF therapeutics than either pure correctors or pure potentiators. To the best of our knowledge this is the first report of structure-based discovery of CFTR modulators.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/química , Regulador de Condutância Transmembrana em Fibrose Cística/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Animais , Sítios de Ligação/genética , Linhagem Celular , Células Cultivadas , Simulação por Computador , Fibrose Cística/tratamento farmacológico , Fibrose Cística/genética , Fibrose Cística/metabolismo , Fibrose Cística/fisiopatologia , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células HeLa , Ensaios de Triagem em Larga Escala , Humanos , Modelos Moleculares , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Ratos Endogâmicos F344 , Mucosa Respiratória/efeitos dos fármacos , Deleção de Sequência , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade
18.
EMBO J ; 25(20): 4728-39, 2006 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-17036051

RESUMO

The human ATP-binding cassette (ABC) protein CFTR (cystic fibrosis transmembrane conductance regulator) is a chloride channel, whose dysfunction causes cystic fibrosis. To gain structural insight into the dynamic interaction between CFTR's nucleotide-binding domains (NBDs) proposed to underlie channel gating, we introduced target cysteines into the NBDs, expressed the channels in Xenopus oocytes, and used in vivo sulfhydryl-specific crosslinking to directly examine the cysteines' proximity. We tested five cysteine pairs, each comprising one introduced cysteine in the NH(2)-terminal NBD1 and another in the COOH-terminal NBD2. Identification of crosslinked product was facilitated by co-expression of NH(2)-terminal and COOH-terminal CFTR half channels each containing one NBD. The COOH-terminal half channel lacked all native cysteines. None of CFTR's 18 native cysteines was found essential for wild type-like, phosphorylation- and ATP-dependent, channel gating. The observed crosslinks demonstrate that NBD1 and NBD2 interact in a head-to-tail configuration analogous to that in homodimeric crystal structures of nucleotide-bound prokaryotic NBDs. CFTR phosphorylation by PKA strongly promoted both crosslinking and opening of the split channels, firmly linking head-to-tail NBD1-NBD2 association to channel opening.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Ativação do Canal Iônico , Processamento de Proteína Pós-Traducional , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fibrose Cística/genética , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Expressão Gênica , Humanos , Ativação do Canal Iônico/genética , Oócitos/citologia , Oócitos/metabolismo , Fosforilação , Células Procarióticas/metabolismo , Processamento de Proteína Pós-Traducional/genética , Estrutura Terciária de Proteína/genética , Xenopus , Xenopus laevis
19.
Biochemistry ; 41(31): 9803-12, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12146946

RESUMO

We have previously reported that three residues of the fourth transmembrane segment (TM4) of the Na,K- and gastric H,K-ATPase alpha-subunits appear to play a major role in the distinct cation selectivities of these pumps [Mense, M., et al. (2000) J. Biol. Chem. 275, 1749-1756]. Substituting these three residues in the Na,K-ATPase sequence with their H,K-ATPase counterparts (L319F, N326Y, T340S) and replacing the TM3-TM4 ectodomain sequence with that of the H,K-ATPase alpha-subunit result in a pump that exhibits 50% of its maximal ATPase activity in the absence of Na(+) when the assay is performed at pH 6.0. This effect is not seen when the ectodomain alone is replaced. To gain more insight into the contributions of the three residues to establishing the selectivity of these pumps for Na(+) ions versus protons, we generated Na,K-ATPase constructs in which these residues are replaced by their H,K-ATPase counterparts either singly or in combinations. Surprisingly, none of the point mutants nor even the triple mutant was able to hydrolyze ATP at pH 6.0 at a rate greater than 20% of their respective V(max)s. For the point mutants L319F and N326Y, protons seem to competitively inhibit ATP hydrolysis at pH 6.0, based on the low apparent affinity for Na(+) ions at pH 6.0 compared to pH 7.5. It would appear, therefore, that the cation selectivity of Na,K- and H,K-ATPase is generated through a cooperative effort between residues of transmembrane segments and the flanking loops that connect these transmembrane domains. This view is further supported by homology modeling of the Na,K-ATPase based on the crystal structure of the SERCA pump.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Estômago/enzimologia , Animais , Sequência de Bases , Cátions , Primers do DNA , ATPase Trocadora de Hidrogênio-Potássio/química , ATPase Trocadora de Hidrogênio-Potássio/genética , Concentração de Íons de Hidrogênio , Células LLC-PK1 , Mutação Puntual , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética , Suínos , Vanadatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...