Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(5)2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33673424

RESUMO

Telomerase negative cancer cell types use the Alternative Lengthening of Telomeres (ALT) pathway to elongate telomeres ends. Here, we show that silencing human DNA polymerase (Pol λ) in ALT cells represses ALT activity and induces telomeric stress. In addition, replication stress in the absence of Pol λ, strongly affects the survival of ALT cells. In vitro, Pol λ can promote annealing of even a single G-rich telomeric repeat to its complementary strand and use it to prime DNA synthesis. The noncoding telomeric repeat containing RNA TERRA and replication protein A negatively regulate this activity, while the Protection of Telomeres protein 1 (POT1)/TPP1 heterodimer stimulates Pol λ. Pol λ associates with telomeres and colocalizes with TPP1 in cells. In summary, our data suggest a role of Pol λ in the maintenance of telomeres by the ALT mechanism.


Assuntos
Aminopeptidases/metabolismo , DNA Polimerase beta/metabolismo , Quadruplex G , Serina Proteases/metabolismo , Homeostase do Telômero , Proteínas de Ligação a Telômeros/metabolismo , Linhagem Celular Tumoral , Humanos , Complexos Multiproteicos , Proteína de Replicação A/metabolismo , Complexo Shelterina , Telômero/química , Telômero/metabolismo
2.
Nucleic Acids Res ; 46(18): 9816-9828, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30102405

RESUMO

p15PAF is an oncogenic intrinsically disordered protein that regulates DNA replication and lesion bypass by interacting with the human sliding clamp PCNA. In the absence of DNA, p15PAF traverses the PCNA ring via an extended PIP-box that contacts the sliding surface. Here, we probed the atomic-scale structure of p15PAF-PCNA-DNA ternary complexes. Crystallography and MD simulations show that, when p15PAF occupies two subunits of the PCNA homotrimer, DNA within the ring channel binds the unoccupied subunit. The structure of PCNA-bound p15PAF in the absence and presence of DNA is invariant, and solution NMR confirms that DNA does not displace p15PAF from the ring wall. Thus, p15PAF reduces the available sliding surfaces of PCNA, and may function as a belt that fastens the DNA to the clamp during synthesis by the replicative polymerase (pol δ). This constraint, however, may need to be released for efficient DNA lesion bypass by the translesion synthesis polymerase (pol η). Accordingly, our biochemical data show that p15PAF impairs primer synthesis by pol η-PCNA holoenzyme against both damaged and normal DNA templates. In light of our findings, we discuss the possible mechanistic roles of p15PAF in DNA replication and suppression of DNA lesion bypass.


Assuntos
Proteínas de Transporte/química , DNA/química , Proteínas Intrinsicamente Desordenadas/química , Antígeno Nuclear de Célula em Proliferação/química , Proteínas de Transporte/genética , Cristalografia por Raios X , DNA/genética , DNA Polimerase III/química , DNA Polimerase III/genética , Replicação do DNA/genética , Proteínas de Ligação a DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/genética , Holoenzimas/química , Holoenzimas/genética , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Espectroscopia de Ressonância Magnética , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Antígeno Nuclear de Célula em Proliferação/genética
3.
Biophys J ; 113(7): 1373-1382, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28978432

RESUMO

Ribonucleotide incorporation is the most common error occurring during DNA replication. Cells have hence developed mechanisms to remove ribonucleotides from the genome and restore its integrity. Indeed, the persistence of ribonucleotides into DNA leads to severe consequences, such as genome instability and replication stress. Thus, it becomes important to understand the effects of ribonucleotides incorporation, starting from their impact on DNA structure and conformation. Here we present a systematic study of the effects of ribonucleotide incorporation into DNA molecules. We have developed, to our knowledge, a new method to efficiently synthesize long DNA molecules (hundreds of basepairs) containing ribonucleotides, which is based on a modified protocol for the polymerase chain reaction. By means of atomic force microscopy, we could therefore investigate the changes, upon ribonucleotide incorporation, of the structural and conformational properties of numerous DNA populations at the single-molecule level. Specifically, we characterized the scaling of the contour length with the number of basepairs and the scaling of the end-to-end distance with the curvilinear distance, the bending angle distribution, and the persistence length. Our results revealed that ribonucleotides affect DNA structure and conformation on scales that go well beyond the typical dimension of the single ribonucleotide. In particular, the presence of ribonucleotides induces a systematic shortening of the molecules, together with a decrease of the persistence length. Such structural changes are also likely to occur in vivo, where they could directly affect the downstream DNA transactions, as well as interfere with protein binding and recognition.


Assuntos
DNA/metabolismo , Conformação de Ácido Nucleico , Ribonucleotídeos/metabolismo , DNA/química , Escherichia coli , Modelos Lineares , Microscopia de Força Atômica , Mutação , Reação em Cadeia da Polimerase , Ribonucleotídeos/química , Taq Polimerase/genética , Taq Polimerase/metabolismo
4.
Nucleic Acids Res ; 45(5): 2600-2614, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-27994034

RESUMO

Ribonucleotides (rNs) incorporated in the genome by DNA polymerases (Pols) are removed by RNase H2. Cytidine and guanosine preferentially accumulate over the other rNs. Here we show that human Pol η can incorporate cytidine monophosphate (rCMP) opposite guanine, 8-oxo-7,8-dihydroguanine, 8-methyl-2΄-deoxyguanosine and a cisplatin intrastrand guanine crosslink (cis-PtGG), while it cannot bypass a 3-methylcytidine or an abasic site with rNs as substrates. Pol η is also capable of synthesizing polyribonucleotide chains, and its activity is enhanced by its auxiliary factor DNA Pol δ interacting protein 2 (PolDIP2). Human RNase H2 removes cytidine and guanosine less efficiently than the other rNs and incorporation of rCMP opposite DNA lesions further reduces the efficiency of RNase H2. Experiments with XP-V cell extracts indicate Pol η as the major basis of rCMP incorporation opposite cis-PtGG. These results suggest that translesion synthesis by Pol η can contribute to the accumulation of rCMP in the genome, particularly opposite modified guanines.


Assuntos
Dano ao DNA , Reparo do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Ribonuclease H/metabolismo , Ribonucleotídeos/metabolismo , Linhagem Celular , Monofosfato de Citidina/metabolismo , DNA/biossíntese , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , RNA/biossíntese , Xeroderma Pigmentoso/genética
5.
Genes (Basel) ; 7(9)2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27589807

RESUMO

DNA is constantly exposed to both endogenous and exogenous damages. More than 10,000 DNA modifications are induced every day in each cell's genome. Maintenance of the integrity of the genome is accomplished by several DNA repair systems. The core enzymes for these pathways are the DNA polymerases. Out of 17 DNA polymerases present in a mammalian cell, at least 13 are specifically devoted to DNA repair and are often acting in different pathways. DNA polymerases ß and λ are involved in base excision repair of modified DNA bases and translesion synthesis past DNA lesions. Polymerase λ also participates in non-homologous end joining of DNA double-strand breaks. However, recent data have revealed that, depending on their relative levels, the cell cycle phase, the ratio between deoxy- and ribo-nucleotide pools and the interaction with particular auxiliary proteins, the repair reactions carried out by these enzymes can be an important source of genetic instability, owing to repair mistakes. This review summarizes the most recent results on the ambivalent properties of these enzymes in limiting or promoting genetic instability in mammalian cells, as well as their potential use as targets for anticancer chemotherapy.

6.
Nat Commun ; 7: 10805, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26917111

RESUMO

Oxidative stress is a very frequent source of DNA damage. Many cellular DNA polymerases (Pols) can incorporate ribonucleotides (rNMPs) during DNA synthesis. However, whether oxidative stress-triggered DNA repair synthesis contributes to genomic rNMPs incorporation is so far not fully understood. Human specialized Pols ß and λ are the important enzymes involved in the oxidative stress tolerance, acting both in base excision repair and in translesion synthesis past the very frequent oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxo-G). We found that Pol ß, to a greater extent than Pol λ can incorporate rNMPs opposite normal bases or 8-oxo-G, and with a different fidelity. Further, the incorporation of rNMPs opposite 8-oxo-G delays repair by DNA glycosylases. Studies in Pol ß- and λ-deficient cell extracts suggest that Pol ß levels can greatly affect rNMP incorporation opposite oxidative DNA lesions.


Assuntos
Dano ao DNA , DNA Glicosilases/metabolismo , DNA Polimerase beta/metabolismo , Reparo do DNA , Estresse Oxidativo , Ribonucleotídeos/metabolismo , Animais , Linhagem Celular , Guanina/análogos & derivados , Guanina/metabolismo , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...