Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Astron Astrophys ; 6472021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34257461

RESUMO

CONTEXT: For all the amides detected in the interstellar medium (ISM), the corresponding nitriles or isonitriles have also been detected in the ISM, some of which have relatively high abundances. Among the abundant nitriles for which the corresponding amide has not yet been detected is cyanoacetylene (HCCCN), whose amide counterpart is propiolamide (HCCC(O)NH2). AIMS: With the aim of supporting searches for this amide in the ISM, we provide a complete rotational study of propiolamide from 6 GHz to 440 GHz. METHODS: Time-domain Fourier transform microwave (FTMW) spectroscopy under supersonic expansion conditions between 6 GHz and 18 GHz was used to accurately measure and analyze ground-state rotational transitions with resolved hyperfine structure arising from nuclear quadrupole coupling interactions of the 14N nucleus. We combined this technique with the frequency-domain room-temperature millimeter wave and submillimeter wave spectroscopies from 75 GHz to 440 GHz in order to record and assign the rotational spectra in the ground state and in the low-lying excited vibrational states. We used the ReMoCA spectral line survey performed with the Atacama Large Millimeter/submillimeter Array toward the star-forming region Sgr B2(N) to search for propiolamide. RESULTS: We identified and measured more than 5500 distinct frequency lines of propiolamide in the laboratory. These lines were fitted using an effective semi-rigid rotor Hamiltonian with nuclear quadrupole coupling interactions taken into consideration. We obtained accurate sets of spectroscopic parameters for the ground state and the three low-lying excited vibrational states. We report the nondetection of propiolamide toward the hot cores Sgr B2(N1S) and Sgr B2(N2). We find that propiolamide is at least 50 and 13 times less abundant than acetamide in Sgr B2(N1S) and Sgr B2(N2), respectively, indicating that the abundance difference between both amides is more pronounced by at least a factor of 8 and 2, respectively, than for their corresponding nitriles. CONCLUSIONS: Although propiolamide has yet to be included in astrochemical modeling networks, the observed upper limit to the ratio of propiolamide to acetamide seems consistent with the ratios of related species as determined from past simulations. The comprehensive spectroscopic data presented in this paper will aid future astronomical searches.

2.
Astron Astrophys ; 6392020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33154598

RESUMO

CONTEXT: Glycolamide is a glycine isomer and also one of the simplest derivatives of acetamide (e.g., one hydrogen atom is replaced with a hydroxyl group), which is a known interstellar molecule. AIMS: In this context, the aim of our work is to provide direct experimental frequencies of the ground vibrational state of glycolamide in the centimeter-, millimeter- and submillimeter-wavelength regions in order to enable its identification in the interstellar medium. METHODS: We employed a battery of state-of-the-art rotational spectroscopic techniques in the frequency and time domain to measure the frequencies of glycolamide. We used the spectral line survey named Exploring Molecular Complexity with ALMA (EMoCA), which was performed toward the star forming region Sgr B2(N) with ALMA to search for glycolamide in space. We also searched for glycolamide toward Sgr B2(N) with the Effelsberg radio telescope. The astronomical spectra were analyzed under the local thermodynamic equilibrium approximation. We used the gas-grain chemical kinetics model MAGICKAL to interpret the results of the astronomical observations. RESULTS: About 1500 transitions have been newly assigned up to 460 GHz to the most stable conformer, and a precise set of spectroscopic constants was determined. Spectral features of glycolamide were then searched for in the prominent hot molecular core Sgr B2(N2). We report the nondetection of glycolamide toward this source with an abundance at least six and five times lower than that of acetamide and glycolaldehyde, respectively. Our astrochemical model suggests that glycolamide may be present in this source at a level just below the upper limit, which was derived from the EMoCA survey. We could also not detect the molecule in the region's extended molecular envelope, which was probed with the Effelsberg telescope. We find an upper limit to its column density that is similar to the column densities obtained earlier for acetamide and glycolaldehyde with the Green Bank Telescope.

3.
Astron Astrophys ; 5972017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28008187

RESUMO

AIMS: We aim to investigate the physical and chemical properties of the molecular envelope of the oxygen-rich AGB star IK Tau. METHODS: We carried out a millimeter wavelength line survey between ~79 and 356 GHz with the IRAM-30 m telescope. We analysed the molecular lines detected in IK Tau using the population diagram technique to derive rotational temperatures and column densities. We conducted a radiative transfer analysis of the SO2 lines, which also helped us to verify the validity of the approximated method of the population diagram for the rest of the molecules. RESULTS: For the first time in this source we detected rotational lines in the ground vibrational state of HCO+, NS, NO, and H2CO, as well as several isotopologues of molecules previously identified, namely, C18O, Si17O, Si18O, 29SiS, 30SiS, Si34S, H13CN, 13CS, C34S, H234S, 34SO, and 34SO2. We also detected several rotational lines in vibrationally excited states of SiS and SiO isotopologues, as well as rotational lines of H2O in the vibrationally excited state ν2=2. We have also increased the number of rotational lines detected of molecules that were previously identified toward IK Tau, including vibrationally excited states, enabling a detailed study of the molecular abundances and excitation temperatures. In particular, we highlight the detection of NS and H2CO with fractional abundances of f(NS)~10-8 and f(H2CO)~[10-7-10-8 ]. Most of the molecules display rotational temperatures between 15 and 40 K. NaCl and SiS isotopologues display rotational temperatures higher than the average (~65 K). In the case of SO2 a warm component with Trot~290 K is also detected. CONCLUSIONS: With a total of ~350 lines detected of 34 different molecular species (including different isotopologues), IK Tau displays a rich chemistry for an oxygen-rich circumstellar envelope. The detection of carbon bearing molecules like H2CO, as well as the discrepancies found between our derived abundances and the predictions from chemical models for some molecules, highlight the need for a revision of standard chemical models. We were able to identify at least two different emission components in terms of rotational temperatures. The warm component, which is mainly traced out by SO2, is probably arising from the inner regions of the envelope (at ≲8R∗) where SO2 has a fractional abundance of f(SO2)~10-6. This result should be considered for future investigation of the main formation channels of this, and other, parent species in the inner winds of O-rich AGB stars, which at present are not well reproduced by current chemistry models.

4.
Astron Astrophys ; 5922016 08.
Artigo em Inglês | MEDLINE | ID: mdl-28065983

RESUMO

CONTEXT: A discrepancy exists between the abundance of ammonia (NH3) derived previously for the circumstellar envelope (CSE) of IRC+10216 from far-IR submillimeter rotational lines and that inferred from radio inversion or mid-infrared (MIR) absorption transitions. AIMS: To address the discrepancy described above, new high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of IRC+10216. METHODS: We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J = 3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. The computed emission line profiles are compared with the new HIFI data, the radio inversion transitions, and the MIR absorption lines in the ν2 band taken from the literature. RESULTS: We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8 ± 0.5) × 10-8 for ortho-NH3 and [Formula: see text] for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1σ confidence level).

5.
Astrophys J ; 832(1)2016 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31844334

RESUMO

We present results from a comprehensive submillimeter spectral survey toward the source Orion South, based on data obtained with the HIFI instrument aboard the Herschel Space Observatory, covering the frequency range 480 to 1900 GHz. We detect 685 spectral lines with S/N > 3σ, originating from 52 different molecular and atomic species. We model each of the detected species assuming conditions of Local Thermodynamic Equilibrium. This analysis provides an estimate of the physical conditions of Orion South (column density, temperature, source size, & V LSR ). We find evidence for three different cloud components: a cool (T ex ~ 20 - 40 K), spatially extended (> 60″), and quiescent (ΔVFWHM ~ 4 km s -1) component; a warmer (T ex ~ 80 - 100 K), less spatially extended (~ 30″), and dynamic (ΔVFWHM ~ 8 km s -1) component, which is likely affected by embedded outflows; and a kinematically distinct region (T ex > 100 K; V LSR ~ 8 km s -1), dominated by emission from species which trace ultraviolet irradiation, likely at the surface of the cloud. We find little evidence for the existence of a chemically distinct "hot core" component, likely due to the small filling factor of the hot core or hot cores within the Herschel beam. We find that the chemical composition of the gas in the cooler, quiescent component of Orion South more closely resembles that of the quiescent ridge in Orion-KL. The gas in the warmer, dynamic component, however, more closely resembles that of the Compact Ridge and Plateau regions of Orion-KL, suggesting that higher temperatures and shocks also have an influence on the overall chemistry of Orion South.

6.
Nature ; 495(7441): 344-7, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23485967

RESUMO

In the past decade, our understanding of galaxy evolution has been revolutionized by the discovery that luminous, dusty starburst galaxies were 1,000 times more abundant in the early Universe than at present. It has, however, been difficult to measure the complete redshift distribution of these objects, especially at the highest redshifts (z > 4). Here we report a redshift survey at a wavelength of three millimetres, targeting carbon monoxide line emission from the star-forming molecular gas in the direction of extraordinarily bright millimetre-wave-selected sources. High-resolution imaging demonstrates that these sources are strongly gravitationally lensed by foreground galaxies. We detect spectral lines in 23 out of 26 sources and multiple lines in 12 of those 23 sources, from which we obtain robust, unambiguous redshifts. At least 10 of the sources are found to lie at z > 4, indicating that the fraction of dusty starburst galaxies at high redshifts is greater than previously thought. Models of lens geometries in the sample indicate that the background objects are ultra-luminous infrared galaxies, powered by extreme bursts of star formation.

7.
Phys Rev Lett ; 111(23): 231101, 2013 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-24476248

RESUMO

A limit on a possible cosmological variation of the proton-to-electron mass ratio µ is derived from methanol (CH3OH) absorption lines in the benchmark PKS1830-211 lensing galaxy at redshift z=0.89 observed with the Effelsberg 100-m radio telescope, the Institute de Radio Astronomie Millimétrique 30-m telescope, and the Atacama Large Millimeter/submillimeter Array. Ten different absorption lines of CH3OH covering a wide range of sensitivity coefficients K(µ) are used to derive a purely statistical 1σ constraint of Δµ/µ=(1.5±1.5)×10(-7) for a lookback time of 7.5 billion years. Systematic effects of chemical segregation, excitation temperature, frequency dependence, and time variability of the background source are quantified. A multidimensional linear regression analysis leads to a robust constraint of Δµ/µ=(-1.0±0.8(stat)±1.0(sys))×10(-7).

8.
Philos Trans A Math Phys Eng Sci ; 370(1978): 5174-85, 2012 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-23028164

RESUMO

The Herschel-guaranteed time key programme PRobing InterStellar Molecules with Absorption line Studies (PRISMAS)(1) is providing a survey of the interstellar hydrides containing the elements C, O, N, F and Cl. As the building blocks of interstellar molecules, hydrides provide key information on their formation pathways. They can also be used as tracers of important physical and chemical properties of the interstellar gas that are difficult to measure otherwise. This paper presents an analysis of two sight-lines investigated by the PRISMAS project, towards the star-forming regions W49N and W51. By combining the information extracted from the detected spectral lines, we present an analysis of the physical properties of the diffuse interstellar gas, including the electron abundance, the fraction of gas in molecular form, and constraints on the cosmic ray ionization rate and the gas density.

9.
J Chem Phys ; 137(10): 104313, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22979865

RESUMO

In this work, terahertz and Fourier transform far-infrared (FTFIR) synchrotron spectra of methyl mercaptan, CH(3)SH, have been investigated in order to provide new laboratory information for enhanced observations of this species in interstellar molecular clouds and star-forming regions. Like its methanol cousin, methyl mercaptan has particularly rich spectra associated with its large-amplitude internal rotation that extend throughout the THz and FIR regions. We have recorded new spectra for CH(3)SH from 1.1-1.5 and 1.790-1.808 THz at the University of Cologne as well as high-resolution FTFIR synchrotron spectra from 50-550 cm(-1) at 0.001 cm(-1) resolution on the far-IR beam-line at the Canadian Light Source. Assignments are reported for rotational quantum numbers up to J ≈ 40 and K ≈ 15, and torsional states up to v(t) = 2 for the THz measurements and v(t) = 3 for the FTFIR observations. The THz and FTFIR measurements together with literature results have been combined in a global analysis of a dataset comprising a total of 1725 microwave and THz frequencies together with ~18000 FTFIR transitions, ranging up to v(t) = 2 and J(max) = 30 for MW∕THz and 40 for FTFIR. The global fit employs 78 torsion-rotation parameters and has achieved a weighted standard deviation of ~1.1. A prediction list (v(t) ≤ 2, J ≤ 45 and K ≤ 20) has been generated from the model giving essentially complete coverage of observable CH(3)(32)SH transitions within the bandwidths of major new astronomical facilities such as HIFI (Heterodyne Instrument for the Far Infrared) on the Herschel Space Observatory, ALMA (Atacama Large Millimeter Array), SOFIA (Stratospheric Observatory For Infrared Astronomy) and APEX (Atacama Pathfinder Experiment) to close to spectroscopic accuracy.


Assuntos
Compostos de Sulfidrila/química , Modelos Moleculares , Espectroscopia de Infravermelho com Transformada de Fourier , Espectroscopia Terahertz
10.
Rev Sci Instrum ; 82(9): 091301, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974566

RESUMO

The Atacama pathfinder experiment Sunyaev-Zel'dovich (APEX-SZ) instrument is a millimeter-wave cryogenic receiver designed to observe galaxy clusters via the Sunyaev-Zel'dovich effect from the 12 m APEX telescope on the Atacama plateau in Chile. The receiver contains a focal plane of 280 superconducting transition-edge sensor (TES) bolometers instrumented with a frequency-domain multiplexed readout system. The bolometers are cooled to 280 mK via a three-stage helium sorption refrigerator and a mechanical pulse-tube cooler. Three warm mirrors, two 4 K lenses, and a horn array couple the TES bolometers to the telescope. APEX-SZ observes in a single frequency band at 150 GHz with 1' angular resolution and a 22' field-of-view, all well suited for cluster mapping. The APEX-SZ receiver has played a key role in the introduction of several new technologies including TES bolometers, the frequency-domain multiplexed readout, and the use of a pulse-tube cooler with bolometers. As a result of these new technologies, the instrument has a higher instantaneous sensitivity and covers a larger field-of-view than earlier generations of Sunyaev-Zel'dovich instruments. The TES bolometers have a median sensitivity of 890 µK(CMB)√s (NEy of 3.5 × 10(-4) √s). We have also demonstrated upgraded detectors with improved sensitivity of 530 µK(CMB)√s (NEy of 2.2 × 10(-4) √s). Since its commissioning in April 2007, APEX-SZ has been used to map 48 clusters. We describe the design of the receiver and its performance when installed on the APEX telescope.

11.
Nature ; 439(7076): 563-4, 2006 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-16452973

RESUMO

The most distant known object in the Solar System, 2003 UB313 (97 au from the Sun), was recently discovered near its aphelion. Its high eccentricity and inclination to the ecliptic plane, along with its perihelion near the orbit of Neptune, identify it as a member of the 'scattered disk'. This disk of bodies probably originates in the Kuiper belt objects, which orbit near the ecliptic plane in circular orbits between 30 and 50 au, and may include Pluto as a member. The optical brightness of 2003 UB313, if adjusted to Pluto's distance, is greater than that of Pluto, which suggested that it might be larger than Pluto. The actual size, however, could not be determined from the optical measurements because the surface reflectivity (albedo) was unknown. Here we report observations of the thermal emission of 2003 UB313 at a wavelength of 1.2 mm, which in combination with the measured optical brightness leads to a diameter of 3,000 +/- 300 +/- 100 km. Here the first error reflects measurement uncertainties, while the second derives from the unknown object orientation. This makes 2003 UB313 the largest known trans-neptunian object, even larger than Pluto (2,300 km). The albedo is 0.60 +/- 0.10 +/- 0.05, which is strikingly similar to that of Pluto, suggesting that the methane seen in the optical spectrum causes a highly reflective icy surface.

12.
Science ; 311(5757): 54-7, 2006 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-16339410

RESUMO

We have measured the distance to the massive star-forming region W3OH in the Perseus spiral arm of the Milky Way to be 1.95 +/- 0.04 kiloparsecs (5.86 x10(16) km). This distance was determined by triangulation, with Earth's orbit as one segment of a triangle, using the Very Long Baseline Array. This resolves the long-standing problem that there is a discrepancy of a factor of 2 between different techniques used to determine distances. The reason for the discrepancy is that this portion of the Perseus arm has anomalous motions. The orientation of the anomalous motion agrees with spiral density-wave theory, but the magnitude of the motion is somewhat larger than most models predict.

13.
Nature ; 434(7037): 1112-5, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15858569

RESUMO

It was established over a decade ago that the remarkable high-energy transients known as soft gamma-ray repeaters (SGRs) are located in our Galaxy and originate from neutron stars with intense (< or = 10(15)G) magnetic fields-so-called 'magnetars'. On 27 December 2004, a giant flare with a fluence exceeding 0.3 erg cm(-2) was detected from SGR 1806-20. Here we report the detection of a fading radio counterpart to this event. We began a monitoring programme from 0.2 to 250 GHz and obtained a high-resolution 21-cm radio spectrum that traces the intervening interstellar neutral hydrogen clouds. Analysis of the spectrum yields the first direct distance measurement of SGR 1806-20: the source is located at a distance greater than 6.4 kpc and we argue that it is nearer than 9.8 kpc. If correct, our distance estimate lowers the total energy of the explosion and relaxes the demands on theoretical models. The energetics and the rapid decay of the radio source are not compatible with the afterglow model that is usually invoked for gamma-ray bursts. Instead, we suggest that the rapidly decaying radio emission arises from the debris ejected during the explosion.

14.
Phys Rev Lett ; 95(26): 261301, 2005 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-16486334

RESUMO

We have detected the four 18 cm OH lines from the z approximaetely 0.765 gravitational lens toward PMN J0134-0931. The 1612 and 1720 MHz lines are in conjugate absorption and emission, providing a laboratory to test the evolution of fundamental constants over a large lookback time. We compare the HI and OH main line absorption redshifts of the different components in the z approximately 0.765 absorber and the z approximately 0.685 lens toward B0218 + 357 to place stringent constraints on changes in F triple-bond g(p)[alpha(2)/mu](1.57). We obtain [DeltaF/F] = (0.44 +/- 0.36(stat) +/- 1.0(sys)t) x 10(-5), consistent with no evolution over the redshift range 0 < z < or = 0.7. The measurements have a 2sigma sensitivity of [Deltaalpha/alpha] < 6.7 x 10(-6) or [Deltamu/mu] < 1.4 x 10(-5) to fractional changes in alpha and mu over a period of approximately 6.5 G yr, half the age of the Universe. These are among the most sensitive constraints on changes in mu.

15.
Nature ; 419(6908): 694-6, 2002 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-12384690

RESUMO

Many galaxies are thought to have supermassive black holes at their centres-more than a million times the mass of the Sun. Measurements of stellar velocities and the discovery of variable X-ray emission have provided strong evidence in favour of such a black hole at the centre of the Milky Way, but have hitherto been unable to rule out conclusively the presence of alternative concentrations of mass. Here we report ten years of high-resolution astrometric imaging that allows us to trace two-thirds of the orbit of the star currently closest to the compact radio source (and massive black-hole candidate) Sagittarius A*. The observations, which include both pericentre and apocentre passages, show that the star is on a bound, highly elliptical keplerian orbit around Sgr A*, with an orbital period of 15.2 years and a pericentre distance of only 17 light hours. The orbit with the best fit to the observations requires a central point mass of (3.7 +/- 1.5) x 10(6) solar masses (M(*)). The data no longer allow for a central mass composed of a dense cluster of dark stellar objects or a ball of massive, degenerate fermions.

16.
Phys Rev Lett ; 85(26 Pt 1): 5511-4, 2000 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-11136034

RESUMO

We present measurements of absorption by the 21 cm hyperfine transition of neutral hydrogen toward radio sources at substantial look-back times. These data are used in combination with observations of rotational transitions of common interstellar molecules to set limits on the evolution of the fine structure constant: alpha/ alpha<3.5x10(-15) yr(-1), to a look-back time of 4.8 Gyr. In the context of string theory, the limit on the secular evolution of the scale factor of the compact dimensions, R, is &Rdot/ R<10(-15) yr(-1). Including terrestrial and other astronomical measurements places 2sigma limits on slow oscillations of R from the present to the epoch of cosmic nucleosynthesis, just seconds after the big bang, of DeltaR /R<10(-5).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...