Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Matrix Biol ; 110: 40-59, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35470068

RESUMO

Heart failure is accompanied by adverse cardiac remodeling involving extracellular matrix (ECM). Cardiac ECM acts as a major reservoir for many proteins including growth factors, cytokines, collagens, and proteoglycans. Activated fibroblasts during cardiac injury can alter the composition and activity of these ECM proteins. Through unbiased analysis of a microarray dataset of human heart tissue comparing normal hearts (n = 135) to hearts with ischemic cardiomyopathy (n = 94), we identified Asporin (ASPN) as the top differentially regulated gene (DEG) in ischemic cardiomyopathy; its gene-ontology terms relate closely to fibrosis and cell death. ASPN is a Class I small leucine repeat protein member implicated in cancer, osteoarthritis, and periodontal ligament mineralization. However, its role in cardiac remodeling is still unknown. Here, we initially confirmed our big dataset analysis through cells, mice, and clinical atrial biopsy samples to demonstrate increased Aspn expression after pressure overload or cardiac ischemia/reperfusion injury. We tested the hypothesis that Aspn, being a TGFß1 inhibitor, can attenuate fibrosis in mouse models of cardiac injury. We found that Aspn is released by cardiac fibroblasts and attenuates TGFß signaling. Moreover, Aspn-/- mice displayed increased fibrosis and decreased cardiac function after pressure overload by transverse aortic constriction (TAC) in mice. In addition, Aspn protected cardiomyocytes from hypoxia/reoxygenation-induced cell death and regulated mitochondrial bioenergetics in cardiomyocytes. Increased infarct size after ischemia/reperfusion injury in Aspn-/- mice confirmed Aspn's contribution to cardiomyocyte viability. Echocardiography revealed greater reduction in left ventricular systolic function post-I/R in the Aspn-/- animals compared to wild type. Furthermore, we developed an ASPN-mimic peptide using molecular modeling and docking which when administered to mice prevented TAC-induced fibrosis and preserved heart function. The peptide also reduced infarct size after I/R in mice, demonstrating the translational potential of ASPN-based therapy. Thus, we establish the role of ASPN as a critical ECM molecule that regulates cardiac remodeling to preserve heart function.


Assuntos
Cardiomiopatias , Insuficiência Cardíaca , Traumatismo por Reperfusão , Animais , Cardiomiopatias/metabolismo , Cardiomiopatias/patologia , Modelos Animais de Doenças , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Insuficiência Cardíaca/patologia , Infarto/metabolismo , Infarto/patologia , Isquemia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/patologia , Remodelação Ventricular
2.
Int J Mol Sci ; 22(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34445425

RESUMO

Cardiovascular disease is the main cause of death worldwide, making it crucial to search for new therapies to mitigate major adverse cardiac events (MACEs) after a cardiac ischemic episode. Drugs in the class of the glucagon-like peptide-1 receptor agonists (GLP1Ra) have demonstrated benefits for heart function and reduced the incidence of MACE in patients with diabetes. Previously, we demonstrated that a short-acting GLP1Ra known as DMB (2-quinoxalinamine, 6,7-dichloro-N-[1,1-dimethylethyl]-3-[methylsulfonyl]-,6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline or compound 2, Sigma) also mitigates adverse postinfarction left ventricular remodeling and cardiac dysfunction in lean mice through activation of parkin-mediated mitophagy following infarction. Here, we combined proteomics with in silico analysis to characterize the range of effects of DMB in vivo throughout the course of early postinfarction remodeling. We demonstrate that the mitochondrion is a key target of DMB and mitochondrial respiration, oxidative phosphorylation and metabolic processes such as glycolysis and fatty acid beta-oxidation are the main biological processes being regulated by this compound in the heart. Moreover, the overexpression of proteins with hub properties identified by protein-protein interaction networks, such as Atp2a2, may also be important to the mechanism of action of DMB. Data are available via ProteomeXchange with identifier PXD027867.


Assuntos
Ventrículos do Coração/metabolismo , Mitocôndrias Cardíacas/metabolismo , Proteômica/métodos , Quinoxalinas/administração & dosagem , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Remodelação Ventricular/efeitos dos fármacos , Animais , Biologia Computacional , Modelos Animais de Doenças , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Glicólise , Masculino , Camundongos , Fosforilação Oxidativa , Mapas de Interação de Proteínas , Quinoxalinas/farmacologia
3.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008865

RESUMO

Sodium-glucose cotransporter 2 (SGLT2) inhibitors such as empagliflozin are known to reduce the risk of hospitalizations related to heart failure irrespective of diabetic state. Meanwhile, adverse cardiac remodeling remains the leading cause of heart failure and death in the USA. Thus, understanding the mechanisms that are responsible for the beneficial effects of SGLT2 inhibitors is of the utmost relevance and importance. Our previous work illustrated a connection between adverse cardiac remodeling and the regulation of mitochondrial turnover and cellular energetics using a short-acting glucagon-like peptide-1 receptor agonist (GLP1Ra). Here, we sought to determine if the mechanism of the SGLT2 inhibitor empagliflozin (EMPA) in ameliorating adverse remodeling was similar and/or to identify what differences exist, if any. To this end, we administered permanent coronary artery ligation to induce adverse remodeling in wild-type and Parkin knockout mice and examined the progression of adverse cardiac remodeling with or without EMPA treatment over time. Like GLP1Ra, we found that EMPA affords a robust attenuation of PCAL-induced adverse remodeling. Interestingly, unlike the GLP1Ra, EMPA does not require Parkin to improve/maintain mitochondria-related cellular energetics and afford its benefits against developing adverse remodeling. These findings suggests that further investigation of EMPA is warranted as a potential path for developing therapy against adverse cardiac remodeling for patients that may have Parkin and/or mitophagy-related deficiencies.


Assuntos
Compostos Benzidrílicos/uso terapêutico , Metabolismo Energético , Glucosídeos/uso terapêutico , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/fisiopatologia , Biogênese de Organelas , Remodelação Ventricular , Animais , Compostos Benzidrílicos/farmacologia , Eletrocardiografia , Metabolismo Energético/efeitos dos fármacos , Glucosídeos/farmacologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Infarto do Miocárdio/diagnóstico por imagem , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/metabolismo , Remodelação Ventricular/efeitos dos fármacos
4.
Sci Rep ; 10(1): 8284, 2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427925

RESUMO

Given that adverse remodeling is the leading cause of heart failure and death in the USA, there is an urgent unmet need to develop new methods in dealing with this devastating disease. Here we evaluated the efficacy of a short-course glucagon-like peptide-1 receptor agonist therapy-specifically 2-quinoxalinamine, 6,7-dichloro-N-(1,1-dimethylethyl)-3-(methylsulfonyl)-,6,7-dichloro-2-methylsulfonyl-3-N-tert-butylaminoquinoxaline (DMB; aka Compound 2) - in attenuating adverse LV remodeling. We also examined the role, if any, of mitochondrial turnover in this process. Wild-type, Parkin knockout and MitoTimer-expressing mice were subjected to permanent coronary artery ligation, then treated briefly with DMB. LV remodeling and cardiac function were assessed by histology and echocardiography. Autophagy and mitophagy markers were examined by western blot and mitochondrial biogenesis was inferred from MitoTimer protein fluorescence and qPCR. We found that DMB given post-infarction significantly reduced adverse LV remodeling and the decline of cardiac function. This paralleled an increase in autophagy, mitophagy and mitochondrial biogenesis. The salutary effects of the drug were lost in Parkin knockout mice, implicating Parkin-mediated mitophagy as part of its mechanism of action. Our findings suggest that enhancing Parkin-associated mitophagy and mitochondrial biogenesis after infarction is a viable target for therapeutic mitigation of adverse remodeling.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Mitocôndrias Cardíacas/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Quinoxalinas/administração & dosagem , Ubiquitina-Proteína Ligases/genética , Remodelação Ventricular/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Linhagem Celular , Modelos Animais de Doenças , Testes de Função Cardíaca , Masculino , Camundongos , Camundongos Knockout , Mitofagia , Infarto do Miocárdio/etiologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Quinoxalinas/farmacologia , Ratos
5.
Sci Rep ; 9(1): 10001, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292486

RESUMO

Animal studies have demonstrated beneficial effects of therapeutic hypothermia on myocardial function, yet exact mechanisms remain unclear. Impaired autophagy leads to heart failure and mitophagy is important for mitigating ischemia/reperfusion injury. This study aims to investigate whether the beneficial effects of therapeutic hypothermia are due to preserved autophagy and mitophagy. Under general anesthesia, the left anterior descending coronary artery of 19 female farm pigs was occluded for 90 minutes with consecutive reperfusion. 30 minutes after reperfusion, we performed pericardial irrigation with warm or cold saline for 60 minutes. Myocardial tissue analysis was performed one and four weeks after infarction. Therapeutic hypothermia induced a significant increase in autophagic flux, mitophagy, mitochondrial mass and function in the myocardium after infarction. Cell stress, apoptosis, inflammation as well as fibrosis were reduced, with significant preservation of systolic and diastolic function four weeks post infarction. We found similar biochemical changes in human samples undergoing open chest surgery under hypothermic conditions when compared to the warm. These results suggest that autophagic flux and mitophagy are important mechanisms implicated in cardiomyocyte recovery after myocardial infarction under hypothermic conditions. New therapeutic strategies targeting these pathways directly could lead to improvements in prevention of heart failure.


Assuntos
Hipotermia Induzida/métodos , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/terapia , Animais , Apoptose , Autofagia , Modelos Animais de Doenças , Ecocardiografia , Feminino , Humanos , Traumatismo por Reperfusão Miocárdica/diagnóstico por imagem , Traumatismo por Reperfusão Miocárdica/metabolismo , Suínos , Resultado do Tratamento
6.
Life Sci ; 186: 11-16, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28778689

RESUMO

AIMS: Chloramphenicol (CAP), a broad spectrum antibiotic, was shown to protect the heart against ischemia/reperfusion (I/R) injury. CAP also induces autophagy, however, it is not known whether CAP-induced cardioprotection is mediated by autophagy. Therefore, here we aimed to assess whether activation of autophagy is required for the infarct size limiting effect of CAP and to identify which component of CAP-induced autophagy contributes to cardioprotection against I/R injury. MAIN METHODS: Hearts of Sprague-Dawley rats were perfused in Langendorff mode with Krebs-Henseleit solution containing either vehicle (CON), 300µM CAP (CAP), CAP and an inhibitor of autophagosome-lysosome fusion chloroquine (CAP+CQ), or an inhibitor of autophagosome formation, the functional null mutant TAT-HA-Atg5K130R protein (CAP+K130R), and K130R or CQ alone, respectively. After 35min of aerobic perfusion, hearts were subjected to 30min global ischemia and 2h reperfusion. Autophagy was determined by immunoblot against LC3 from left atrial tissue. Infarct size was measured by TTC staining, coronary flow was measured, and the release of creatine kinase (CK) was assessed from the coronary effluent. KEY FINDINGS: CAP treatment induced autophagy, increased phosphorylation of Erk1/2 in the myocardium and significantly reduced infarct size and CK release. Autophagy inhibitor TAT-HA-Atg5K130R abolished cardioprotection by CAP, while in CAP+CQ hearts infarct size and CK release were reduced similarly to as seen in the CAP-treated group. CONCLUSION: This is the first demonstration that autophagosome formation but not autophagosomal clearance is required for CAP-induced cardioprotection. SIGNIFICANCE: Inducing autophagy sequestration might yield novel therapeutic options against acute ischemia/reperfusion injury.


Assuntos
Autofagossomos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Cardiotônicos/uso terapêutico , Cloranfenicol/uso terapêutico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Animais , Autofagossomos/metabolismo , Autofagossomos/patologia , Cardiotônicos/administração & dosagem , Cloranfenicol/administração & dosagem , Circulação Coronária/efeitos dos fármacos , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Projetos Piloto , Ratos Sprague-Dawley
7.
JCI Insight ; 2(4): e89303, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28239650

RESUMO

Mitophagy occurs during ischemia/reperfusion (I/R) and limits oxidative stress and injury. Mitochondrial turnover was assessed in patients undergoing cardiac surgery involving cardiopulmonary bypass (CPB). Paired biopsies of right atrial appendage before initiation and after weaning from CPB were processed for protein analysis, mitochondrial DNA/nuclear DNA ratio (mtDNA:nucDNA ratio), mtDNA damage, mRNA, and polysome profiling. Mitophagy in the post-CPB samples was evidenced by decreased levels of mitophagy adapters NDP52 and optineurin in whole tissue lysate, decreased Opa1 long form, and translocation of Parkin to the mitochondrial fraction. PCR analysis of mtDNA comparing amplification of short vs. long segments of mtDNA revealed increased damage following cardiac surgery. Surprisingly, a marked increase in several mitochondria-specific protein markers and mtDNA:nucDNA ratio was observed, consistent with increased mitochondrial biogenesis. mRNA analysis suggested that mitochondrial biogenesis was traniscription independent and likely driven by increased translation of existing mRNAs. These findings demonstrate in humans that both mitophagy and mitochondrial biogenesis occur during cardiac surgery involving CPB. We suggest that mitophagy is balanced by mitochondrial biogenesis during I/R stress experienced during surgery. Mitigating mtDNA damage and elucidating mechanisms regulating mitochondrial turnover will lead to interventions to improve outcome after I/R in the setting of heart disease.


Assuntos
Apêndice Atrial/metabolismo , Procedimentos Cirúrgicos Cardíacos , Ponte Cardiopulmonar , DNA Mitocondrial/metabolismo , Mitofagia , Traumatismo por Reperfusão Miocárdica/metabolismo , Biogênese de Organelas , RNA Mensageiro/metabolismo , Idoso , Proteínas de Ciclo Celular , Ponte de Artéria Coronária , DNA/metabolismo , Dano ao DNA , Feminino , GTP Fosfo-Hidrolases/metabolismo , Implante de Prótese de Valva Cardíaca , Humanos , Masculino , Proteínas de Membrana Transportadoras , Pessoa de Meia-Idade , Proteínas Nucleares/metabolismo , Polirribossomos , Fator de Transcrição TFIIIA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 311(1): H219-28, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27199111

RESUMO

Autophagy is regulated by nutrient and energy status and plays an adaptive role during nutrient deprivation and ischemic stress. Metabolic syndrome (MetS) is a hypernutritive state characterized by obesity, dyslipidemia, elevated fasting blood glucose levels, and insulin resistance. It has also been associated with impaired autophagic flux and larger-sized infarcts. We hypothesized that diet-induced obesity (DIO) affects nutrient sensing, explaining the observed cardiac impaired autophagy. We subjected male friend virus B NIH (FVBN) mice to a high-fat diet, which resulted in increased weight gain, fat deposition, hyperglycemia, insulin resistance, and larger infarcts after myocardial ischemia-reperfusion. Autophagic flux was impaired after 4 wk on a high-fat diet. To interrogate nutrient-sensing pathways, DIO mice were subjected to overnight fasting, and hearts were processed for biochemical and proteomic analysis. Obese mice failed to upregulate LC3-II or to clear p62/SQSTM1 after fasting, although mRNA for LC3B and p62/SQSTM1 were appropriately upregulated in both groups, demonstrating an intact transcriptional response to fasting. Energy- and nutrient-sensing signal transduction pathways [AMPK and mammalian target of rapamycin (mTOR)] also responded appropriately to fasting, although mTOR was more profoundly suppressed in obese mice. Proteomic quantitative analysis of the hearts under fed and fasted conditions revealed broad changes in protein networks involved in oxidative phosphorylation, autophagy, oxidative stress, protein homeostasis, and contractile machinery. In many instances, the fasting response was quite discordant between lean and DIO mice. Network analysis implicated the peroxisome proliferator-activated receptor and mTOR regulatory nodes. Hearts of obese mice exhibited impaired autophagy, altered proteome, and discordant response to nutrient deprivation.


Assuntos
Autofagia , Jejum/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Obesidade/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Metabolismo Energético , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Obesidade/complicações , Obesidade/patologia , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Mapas de Interação de Proteínas , Proteólise , Proteômica/métodos , Proteína Sequestossoma-1/genética , Proteína Sequestossoma-1/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo
9.
J Card Surg ; 30(11): 856-64, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26404743

RESUMO

We present a review of the evolution of total artificial hearts (TAHs) and new directions in development, including the coupling of VADs as biventricular TAH support.


Assuntos
Insuficiência Cardíaca/terapia , Coração Artificial/tendências , Coração Auxiliar/tendências , Humanos
10.
J Mol Cell Cardiol ; 83: 44-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25543002

RESUMO

Autophagy, a cellular housekeeping process, is essential to maintain tissue homeostasis, particularly in long-lived cells such as cardiomyocytes. Autophagic activity declines with age and may explain many features of age-related cardiac dysfunction. In this review we summarize the current state of knowledge regarding age-related changes in autophagy in the heart. Recent findings from studies in human hearts are presented, including evidence that the autophagic response is intact in the aged human heart. Impaired autophagic clearance of protein aggregates or deteriorating mitochondria will have multiple consequences including increased arrhythmia risk, decreased contractile function, reduced tolerance to ischemic stress, and increased inflammation; thus autophagy represents a potentially important therapeutic target to mitigate the cardiac consequences of aging. This article is part of a Special Issue entitled CV Aging.


Assuntos
Envelhecimento/metabolismo , Arritmias Cardíacas/genética , Autofagia/genética , Miocárdio/metabolismo , Envelhecimento/patologia , Animais , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Regulação da Expressão Gênica , Homeostase , Humanos , Longevidade , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
11.
J Bioenerg Biomembr ; 46(4): 337-45, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25005682

RESUMO

Complex I deficiency is difficult to treat because of the size and complexity of the multi-subunit enzyme complex. Mutations or deletions in the mitochondrial genome are not amenable to gene therapy. However, animal studies have shown that yeast-derived internal NADH quinone oxidoreductase (Ndi1) can be delivered as a cell-permeable recombinant protein (Tat-Ndi1) that can functionally replace complex I damaged by ischemia/reperfusion. Current and future treatment of disorders affecting complex I are discussed, including the use of Tat-Ndi1.


Assuntos
Peptídeos Penetradores de Células/uso terapêutico , Complexo I de Transporte de Elétrons/uso terapêutico , Doenças Mitocondriais/tratamento farmacológico , Proteínas de Saccharomyces cerevisiae/uso terapêutico , Saccharomyces cerevisiae/enzimologia , Animais , Peptídeos Penetradores de Células/genética , Complexo I de Transporte de Elétrons/genética , Humanos , Doenças Mitocondriais/enzimologia , Doenças Mitocondriais/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
13.
J Cardiovasc Pharmacol Ther ; 19(3): 315-20, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24367006

RESUMO

Lethal myocardial ischemia-reperfusion (I/R) injury has been attributed in part to mitochondrial respiratory dysfunction (including damage to complex I) and the resultant excessive production of reactive oxygen species. Recent evidence has shown that reduced nicotinamide adenine dinucleotide-quinone internal oxidoreductase (Ndi1; the single-subunit protein that in yeast serves the analogous function as complex I), transduced by addition of the TAT-conjugated protein to culture media and perfusion buffer, can preserve mitochondrial function and attenuate I/R injury in neonatal rat cardiomyocytes and Langendorff-perfused rat hearts. However, this novel metabolic strategy to salvage ischemic-reperfused myocardium has not been tested in vivo. In this study, TAT-conjugated Ndi1 and placebo-control protein were synthesized using a cell-free system. Mitochondrial uptake and functionality of TAT-Ndi1 were demonstrated in mitochondrial preparations from rat hearts after intraperitoneal administration of the protein. Rats were randomized to receive either TAT-Ndi1 or placebo protein, and 2 hours later all animals underwent 45-minute coronary artery occlusion followed by 2 hours of reperfusion. Infarct size was delineated by tetrazolium staining and normalized to the volume of at-risk myocardium, with all analysis conducted in a blinded manner. Risk region was comparable in the 2 cohorts. Preischemic administration of TAT-Ndi1 was profoundly cardioprotective. These results demonstrate that it is possible to target therapeutic proteins to the mitochondrial matrix and that yeast Ndi1 can substitute for complex I to ameliorate I/R injury in the heart. Moreover, these data suggest that cell-permeable delivery of mitochondrial proteins may provide a novel molecular strategy to treat mitochondrial dysfunction in patients.


Assuntos
Produtos do Gene tat/farmacologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , NAD/farmacologia , Animais , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/biossíntese , Feminino , Mitocôndrias Cardíacas/metabolismo , Ratos , Ratos Sprague-Dawley
14.
J Am Coll Surg ; 216(4): 719-26; discussion 726-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23415552

RESUMO

BACKGROUND: The homeostatic intracellular repair response (HIR2) is an endogenous beneficial pathway that eliminates damaged mitochondria and dysfunctional proteins in response to stress. The underlying mechanism is adaptive autophagy. The purpose of this study was to determine whether the HIR2 response is activated in the heart in patients undergoing cardiac surgery and to assess whether it is associated with the duration of ischemic arrest and predicted surgical outcomes. STUDY DESIGN: Autophagy was assessed in 19 patients undergoing coronary artery bypass or valve surgery requiring cardiopulmonary bypass. Biopsies of the right atrial appendage obtained before initiation of cardiopulmonary bypass and after weaning from cardiopulmonary bypass were analyzed for autophagy by immunoblotting for LC3, Beclin-1, autophagy 5-12, and p62. Changes in p62, a marker of autophagic flux, were correlated with duration of ischemia and with the mortality/morbidity risk scores obtained from the Society of Thoracic Surgeons Adult Cardiac Surgery Database (version 2.73). RESULTS: Heart surgery was associated with a robust increase in autophagic flux indicated by depletion of LC3-I, LC3-II, Beclin-1, and autophagy 5-12; the magnitude of change for each of these factors correlated significantly with changes in the flux marker p62. In addition, changes in p62 correlated directly with cross-clamp time and inversely with the mortality and morbidity risk scores. CONCLUSIONS: These findings are consistent with preclinical studies indicating that HIR2 is cardioprotective and reveal that it is activated in patients in response to myocardial ischemic stress. Strategies designed to amplify HIR2 during conditions of cardiac stress might have a therapeutic use and represent an entirely new approach to myocardial protection in patients undergoing heart surgery.


Assuntos
Autofagia , Procedimentos Cirúrgicos Cardíacos , Homeostase , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Masculino , Pessoa de Meia-Idade , Miocárdio/citologia
15.
Heart Fail Rev ; 18(5): 575-84, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23188163

RESUMO

Whether an element of routine housekeeping or in the setting of imminent disaster, it is a good idea to get one's affairs in order. Autophagy, the process of recycling organelles and protein aggregates, is a basal homeostatic process and an evolutionarily conserved response to starvation and other forms of metabolic stress. Our understanding of the role of autophagy in the heart is changing rapidly as new information becomes available. This review examines the role of autophagy in the heart in the setting of cardioprotection, hypertrophy, and heart failure. Contradictory findings are reconciled in light of recent developments. The preponderance of evidence favors a beneficial role for autophagy in the heart under most conditions.


Assuntos
Autofagia/fisiologia , Insuficiência Cardíaca/patologia , Miócitos Cardíacos/patologia , Estresse Fisiológico , Animais , Insuficiência Cardíaca/metabolismo , Humanos , Miócitos Cardíacos/metabolismo
16.
J Cardiovasc Pharmacol ; 60(2): 125-32, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22472909

RESUMO

Autophagy is a housekeeping process that helps to maintain cellular energy homeostasis and remove damaged organelles. In the heart, autophagy is an adaptive process that is activated in response to stress including acute and chronic ischemia. Given the evidence that autophagy is suppressed in energy-rich conditions, the objective of this review is to examine autophagy and cardioprotection in the setting of the metabolic syndrome. Clinical approaches that involve the induction of cardiac autophagy pharmacologically to enhance the heart's tolerance to ischemia are also discussed.


Assuntos
Autofagia , Metabolismo Energético , Precondicionamento Isquêmico Miocárdico , Síndrome Metabólica/complicações , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Animais , Humanos , Síndrome Metabólica/metabolismo , Síndrome Metabólica/patologia , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Estresse Fisiológico , Remodelação Ventricular
17.
Drugs Aging ; 29(2): 93-103, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22239673

RESUMO

The focus for this clinical review is under-prescribing and non-adherence to medication guidelines in older adults after coronary artery bypass grafting (CABG) surgery. Non-adherence occurs in all age groups, but older adults have a unique set of challenges including difficulty hearing, comprehending, and remembering instructions; acquiring and managing multiple medications; and tolerating drug-drug and drug-disease interactions. Still, non-adherence leads to increased morbidity, mortality, and costs to the healthcare system. Factors contributing to non-adherence include failure to initiate therapy before hospital discharge; poor education about the importance of each medication by hospital staff; poor education about medication side effects; polypharmacy; multiple daily dosing; excessive cost; and the physician's lack of knowledge of clinical indicators for use of medications. To improve adherence, healthcare systems must ensure that (i) all patients are prescribed the appropriate medications at discharge; (ii) patients fill and take these medications post-operatively; and (iii) patients continue long-term use of these medications. Interventions must target central administrative policies within healthcare institutions, the difficulties facing providers, as well as the concerns of patients. Corrective efforts need to be started early during the hospitalization and involve practitioners who can follow patients after the date on which surgical care is no longer needed. A solid, ongoing relationship between patients and their primary-care physicians and cardiologists is essential. This review summarizes the post-operative medication guidelines for CABG surgery, describes barriers that limit the adherence to these guidelines, and suggests possible avenues to improve medication adherence in older cardiac surgery patients.


Assuntos
Ponte de Artéria Coronária , Prescrições de Medicamentos/estatística & dados numéricos , Adesão à Medicação/estatística & dados numéricos , Idoso , Hospitalização/estatística & dados numéricos , Humanos , Preparações Farmacêuticas/provisão & distribuição , Guias de Prática Clínica como Assunto
18.
Autophagy ; 7(12): 1573-4, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22082870

RESUMO

Recent publications link mitophagy mediated by PINK1 and Parkin with cardioprotection and attenuation of inflammation and cell death. The field is in need of methods to monitor mitochondrial turnover in vivo to support the development of new therapies targeting mitochondrial turnover.


Assuntos
Autofagia , Mitocôndrias/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Animais , Humanos , Inflamação , Camundongos , Mitocôndrias/metabolismo , Modelos Biológicos , Miocárdio/metabolismo , Proteínas Quinases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
20.
J Cardiovasc Pharmacol Ther ; 16(3-4): 290-7, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21821531

RESUMO

One of the unmet clinical needs in heart surgery is the prevention of myocardial stunning and necrosis that occurs as a result of ischemia-reperfusion. Myocardial stunning, a frequent consequence after heart surgery, is characterized by a requirement for postoperative inotropic support despite a technically satisfactory heart operation. In high-risk patients with marginal cardiac reserve, stunning is a major cause of prolonged critical care and may be associated with as much as a 5-fold increase in mortality. In contrast, the frequency of myocardial necrosis (myocardial infarction [MI]) after cardiac surgery is less appreciated and its consequences are much more subtle. The consequences may not be apparent for months to years. While we now have a much better understanding of the molecular mechanisms underlying myocardial stunning and MI, we still have no effective way to prevent these complications, nor a consistently effective means to engage the well-studied endogenous mechanisms of cardioprotection. The failure to develop clinically effective interventions is multifactorial and can be attributed to reliance on findings obtained from subcellular and cellular studies, to drawing conclusions from preclinical large animal studies that have been conducted in a disease-free state, and to accepting less than robust surrogate markers of injury in phase II clinical trials. These factors also explain the disappointing failure to identify effective adjuvant therapy in the setting of percutaneous coronary revascularization for acute MI (AMI) and reperfusion injury. These issues have contributed to the disappointing outcomes of large and costly phase III trials, resulting in a lack of enthusiasm on the part of the pharmaceutical industry to engage in further drug development for this indication. The purpose of this review is to (1) define the scope of the clinical problem; (2) summarize the outcomes of selected phases II and III clinical trials; and (3) identify the gap that needs to be closed in order to address the unmet clinical need.


Assuntos
Cardiotônicos/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Procedimentos Cirúrgicos Torácicos/métodos , Animais , Cardiotônicos/uso terapêutico , Ensaios Clínicos Fase II como Assunto , Humanos , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/cirurgia , Cirurgia Torácica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...