Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3909, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890188

RESUMO

We present a combined experimental and theoretical work to obtain the energy loss function (ELF) or the excitation spectrum of samarium in the energy loss range between 3 and 200 eV. At low loss energies, the plasmon excitation is clearly identified and the surface and bulk contributions are distinguished. For the precise analysis the frequency-dependent energy loss function and the related optical constants (n and k) of samarium were extracted from the measured reflection electron energy loss spectroscopy (REELS) spectra by the reverse Monte Carlo method. The ps- and f-sum rules with final ELF fulfils the nominal values with 0.2% and 2.5% accuracy, respectively. It was found that a bulk mode locates at 14.2 eV with the peak width ~6 eV and the corresponding broaden surface plasmon mode locates at energies of 5-11 eV.

2.
Phys Chem Chem Phys ; 23(44): 25335-25346, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34749388

RESUMO

We present the combined experimental and theoretical investigations of the optical properties of amorphous carbon. The reflection electron energy loss spectra (REELS) spectra of carbon were measured using a cylindrical mirror analyzer under ultrahigh vacuum conditions at primary electron energies of 750, 1000 and 1300 eV. The energy loss function and thereby the refractive index n and the extinction coefficient k were determined from these REELS spectra in a wide loss energy range of 2-200 eV by applying our reverse Monte Carlo method. The high accuracy of the obtained optical constants is justified with the ps- and f-sum rules. We found that our present optical constants of amorphous carbon fulfill the sum rules with the highest accuracy compared with the previously published data. Therefore, we highly recommend to replace the previous data with the present ones for practical applications. Moreover, we present the atomic scattering factors of amorphous carbon obtained from the dielectric function to predict its optical constants at a given density.

3.
ACS Appl Mater Interfaces ; 10(26): 22851-22856, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29894147

RESUMO

Recently, we have shown that the protecting layer of nanosize can be produced by means of ion beam mixing (IBM) of a Si/C multilayer system. The corrosion resistance of the layer correlated with the SiC amount and distribution, determined by Auger electron spectroscopy depth profiling. It has also been shown that the IBM of the Si/C system can be well described by TRIDYN simulation. By combining these two findings, it is possible to design protective layers for various arrangements of layer structure and irradiation conditions. Three different multilayer structures (with individual layer thicknesses falling in the range of 10-20 nm) have been irradiated by Ar+ and Xe+ ions at room temperature in the energy and fluence ranges of 40-120 keV and 0.25 × 1016 to 6 × 1016 ion/cm2, respectively. The carbon and silicon depth distributions have been calculated by TRIDYN simulation. From these profiles applying a simple rule for compound formation, the SiC in-depth distributions were calculated. The resulting corrosion resistance has been measured by potentiodynamic corrosion test in 4 M KOH solution. Excellent correlation between these results and the in-depth distribution (calculated by TRIDYN simulation) of SiC has been found. Thus, the design of a protective SiC coatings operating in harsh environments is possible by applying fast and cheap simulation techniques.

4.
Sci Rep ; 8(1): 2124, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29391562

RESUMO

Al2O3 (5 nm)/Si (bulk) sample was subjected to irradiation of 5 keV electrons at room temperature, in a vacuum chamber (pressure 1 × 10-9 mbar) and formation of amorphous SiO2 around the interface was observed. The oxygen for the silicon dioxide growth was provided by the electron bombardment induced bond breaking in Al2O3 and the subsequent production of neutral and/or charged oxygen. The amorphous SiO2 rich layer has grown into the Al2O3 layer showing that oxygen as well as silicon transport occurred during irradiation at room temperature. We propose that both transports are mediated by local electric field and charged and/or uncharged defects created by the electron irradiation. The direct modification of metal oxide/silicon interface by electron-beam irradiation is a promising method of accomplishing direct write electron-beam lithography at buried interfaces.

5.
ACS Appl Mater Interfaces ; 9(51): 44892-44899, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29206438

RESUMO

Ion beam mixing has been used to produce a silicon carbide (SiC)-rich nanolayer for protective coating. Different C/Si/C/Si/C/Si(substrate) multilayer structures (with individual layer thicknesses falling in the range of 10-20 nm) have been irradiated by Ar+ and Xe+ ions at room temperature in the energy and fluence ranges of 40-120 keV and 1-6 × 1016 ion/cm2, respectively. The effects of ion irradiation, including the in-depth distribution of the SiC produced, was determined by Auger electron spectroscopy depth profiling. The thickness of the SiC-rich region was only some nanometers, and it could be tailored by changing the layer structure and the ion irradiation conditions. The corrosion resistance of the layers was investigated by potentiodynamic electrochemical test in 4 M KOH solution. The measured corrosion resistance of the SiC-rich layers was orders of magnitude better than that of pure silicon, and a correlation was found between the corrosion current density and the effective areal density of the SiC.

6.
Ultramicroscopy ; 124: 88-95, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23142749

RESUMO

The intensities of the secondary electrons (SE) and of the backscattered electrons (BSE) at energy 100 eV have been measured on a Ni/C/Ni/C/Ni/C/(Si substrate) multilayer structure by exciting it with primary electrons of 5, 2.5 and 1.25 keV energies. It has been found that both intensities similarly vary while thinning the specimen. The difference as small as 4 nm in the underlying layer thicknesses resulted in visible intensity change. Utilizing this intensity change, the thickness difference of neighboring regions could be revealed from the SE image. No simple phenomenological model was found to interpret the change of intensity, thus the intensity of the BSE electrons has been calculated by means of a newly developed Monte Carlo simulation. This code also considers the secondary electron generation and transport through the solid. The calculated and measured intensities agree well supporting the validity of the model.


Assuntos
Microscopia Eletrônica de Varredura/métodos , Simulação por Computador , Elétrons , Método de Monte Carlo
7.
Ultramicroscopy ; 109(1): 129-32, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18977599

RESUMO

Medium-energy (some tens of keV) ion irradiation is frequently used in various technologies. It is well known that during this irradiation serious alterations are introduced to the material, changing its structure, composition, etc. While there are studies on the amorphization, no results have been reported on the medium-energy ion beam-induced mixing, however. In this work, we present Auger electron spectroscopy (AES) depth profiling measurements of Si/Cr multilayer samples, which were irradiated by various ions (Ga+, Ar+, CF4+) of 20 keV applying angles of incidence of 5 degrees (Ga+), 65 degrees (Ga+) and 75 degrees (Ar+, CF4+). The ion beam-induced mixing at the Si/Cr interface (the broadening of the interface) was measured as a function of the removed layer thickness. The weakest and strongest ion mixing (for a given removed layer thickness) were found for CF4+ and Ga+ 5 degrees irradiations, respectively. In the case of Ga+ irradiation, the larger the angle of incidence the weaker the ion mixing. The extent of mixing does not correlate with the corresponding projected range. Comparison of the experimentally measured ion mixed profiles with those given by dynamic TRIM simulations gave poor agreement for Ar+ and fails for Ga+ irradiations, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...