Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stud Mycol ; 104: 1-85, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37351542

RESUMO

Fruiting bodies (sporocarps, sporophores or basidiomata) of mushroom-forming fungi (Agaricomycetes) are among the most complex structures produced by fungi. Unlike vegetative hyphae, fruiting bodies grow determinately and follow a genetically encoded developmental program that orchestrates their growth, tissue differentiation and sexual sporulation. In spite of more than a century of research, our understanding of the molecular details of fruiting body morphogenesis is still limited and a general synthesis on the genetics of this complex process is lacking. In this paper, we aim at a comprehensive identification of conserved genes related to fruiting body morphogenesis and distil novel functional hypotheses for functionally poorly characterised ones. As a result of this analysis, we report 921 conserved developmentally expressed gene families, only a few dozens of which have previously been reported to be involved in fruiting body development. Based on literature data, conserved expression patterns and functional annotations, we provide hypotheses on the potential role of these gene families in fruiting body development, yielding the most complete description of molecular processes in fruiting body morphogenesis to date. We discuss genes related to the initiation of fruiting, differentiation, growth, cell surface and cell wall, defence, transcriptional regulation as well as signal transduction. Based on these data we derive a general model of fruiting body development, which includes an early, proliferative phase that is mostly concerned with laying out the mushroom body plan (via cell division and differentiation), and a second phase of growth via cell expansion as well as meiotic events and sporulation. Altogether, our discussions cover 1 480 genes of Coprinopsis cinerea, and their orthologs in Agaricus bisporus, Cyclocybe aegerita, Armillaria ostoyae, Auriculariopsis ampla, Laccaria bicolor, Lentinula edodes, Lentinus tigrinus, Mycena kentingensis, Phanerochaete chrysosporium, Pleurotus ostreatus, and Schizophyllum commune, providing functional hypotheses for ~10 % of genes in the genomes of these species. Although experimental evidence for the role of these genes will need to be established in the future, our data provide a roadmap for guiding functional analyses of fruiting related genes in the Agaricomycetes. We anticipate that the gene compendium presented here, combined with developments in functional genomics approaches will contribute to uncovering the genetic bases of one of the most spectacular multicellular developmental processes in fungi. Citation: Nagy LG, Vonk PJ, Künzler M, Földi C, Virágh M, Ohm RA, Hennicke F, Bálint B, Csernetics Á, Hegedüs B, Hou Z, Liu XB, Nan S, M. Pareek M, Sahu N, Szathmári B, Varga T, Wu W, Yang X, Merényi Z (2023). Lessons on fruiting body morphogenesis from genomes and transcriptomes of Agaricomycetes. Studies in Mycology 104: 1-85. doi: 10.3114/sim.2022.104.01.

2.
Persoonia ; 50: 48-122, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38567262

RESUMO

Type material and additional collections of 11 taxa of Gautieria described in Europe and North Africa have been studied, namely G. dubia, G. graveolens, G. morchelliformis var. globispora, G. morchelliformis var. magnicellaris, G. morchelliformis var. morchelliformis, G. morchelliformis var. stenospora, G. otthii, G. pseudovestita, G. retirugosa, G. trabutii and G. villosa. At the same time, morphological and genetic studies on recent and herbarium collections from several European countries have been carried out. This enabled clarification of sections within Gautieria and differentiation of 28 taxa, of which 21 are new to science. However, the deeper relationships and nomenclature changes related to the phylogenetic position of the genus Gautieria within Gomphaceae will not be addressed in this study because they would require a more complete molecular analysis together with that of related genera, e.g., Gomphus, Turbinellus, and the four subgenera of Ramaria. In addition, a lectotype for G. villosa var. villosa and reference specimens for G. graveolens and G. morchelliformis var. morchelliformis are selected, and the new combination G. morchelliformis var. dubia is proposed. Detailed descriptions, macro- and microphotographs and distribution maps of all taxa are provided, as well as extensive information on their ecology, chorology and phylogeny. A key is included to facilitate identification of taxa. Citation: Vidal JM, Cseh P, Merényi Z, et al. 2023. The genus Gautieria (Gomphales) in Europe and the Mediterranean Basin: a morphological and phylogenetic taxonomic revision. Persoonia 50: 48 -122. https://doi.org/10.3767/persoonia.2023.50.03.

3.
Acta Biochim Biophys Hung ; 24(3): 291-4, 1989.
Artigo em Inglês | MEDLINE | ID: mdl-2486882

RESUMO

It was found that milk samples from cows with mastitis have markedly higher selenium concentrations and higher standard deviations than those of healthy cows. A good correlation was found between the severity of the disease and increase of selenium concentration.


Assuntos
Mastite Bovina/metabolismo , Leite/metabolismo , Selênio/metabolismo , Animais , Bovinos , Feminino , Glândulas Mamárias Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...