Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ugeskr Laeger ; 186(3)2024 01 22.
Artigo em Dinamarquês | MEDLINE | ID: mdl-38305316

RESUMO

We present a case report detailing therapeutic application of two lytic antipseudomonal bacteriophages to treat a chronic relapsing Pseudomonas aeruginosa infection of a prosthetic aortic graft. As there are currently no Danish laboratories offering phages for clinical therapy, and this case, to our knowledge represents the first applied phage therapy in Denmark, the practical and regulatory aspects of offering this treatment option in Denmark is briefly reviewed along with the clinical case.


Assuntos
Bacteriófagos , Fagos de Pseudomonas , Humanos , Pseudomonas , Prótese Vascular , Pseudomonas aeruginosa
2.
Methods Mol Biol ; 2734: 89-115, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38066364

RESUMO

In this chapter, we discuss production requirements for therapeutic bacteriophage preparations. We review the current regulatory expectancies and focus on pragmatic production processes, implementing relevant controls to ensure the quality, safety, and efficacy of the final products. The information disclosed in this chapter can also serve as a basis for discussions with competent authorities regarding the implementation of expedited bacteriophage product development and licensing pathways, taking into account some peculiarities of bacteriophages (as compared to conventional medicines), such as their specificity for, and co-evolution with, their bacterial hosts. To maximize the potential of bacteriophages as natural controllers of bacterial populations, the implemented regulatory frameworks and manufacturing processes should not only cater to defined bacteriophage products. But, they should also facilitate personalized approaches in which bacteriophages are selected ad hoc and even trained to target the patient's infecting bacterial strain(s), whether or not in combination with other antimicrobials such as antibiotics.


Assuntos
Bacteriófagos , Humanos , Bacteriófagos/genética , Licenciamento , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
3.
Methods Mol Biol ; 2734: 49-66, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38066362

RESUMO

Properly designed bacteriophage therapeutics are the cornerstone for a successful outcome of bacteriophage therapy. Here we present an overview of the different strategies and steps that can be taken to develop a bacteriophage cocktail that complies with relevant quality and safety requirements. It is based on empirical bacteriophage therapy knowledge from over a century of experience, more recently performed studies, and emerging technologies. We emphasize the selection of adequate bacteriophages and describe a modified Appelmans' method to improve the overall performance of therapeutic bacteriophages individually and collectively in the cocktail. We present two versions of the method, which differ from each other by the employed techniques to evaluate phage activity and synergy: photometric assessment of bacterial growth versus measurement of bacterial respiration via the Omnilog® system.


Assuntos
Bacteriófagos , Bactérias
4.
Viruses ; 15(5)2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37243129

RESUMO

Bacteroides fragilis is a commensal gut bacterium that is associated with a number of blood and tissue infections. It has not yet been recognized as one of the drug-resistant human pathogens, but cases of the refractory infections, caused by strains that are not susceptible to the common antibiotic regimes established for B. fragilis, have been more frequently reported. Bacteriophages (phages) were found to be a successful antibacterial alternative to antibiotic therapy in many cases of multidrug-resistant (MDR) bacterial infections. We have characterized the bacteriophage GEC_vB_Bfr_UZM3 (UZM3), which was used for the treatment of a patient with a chronic osteomyelitis caused by a B. fragilis mixed infection. Studied biological and morphological properties of UZM3 showed that it seems to represent a strictly lytic phage belonging to a siphovirus morphotype. It is characterized by high stability at body temperature and in pH environments for about 6 h. Whole genome sequencing analysis of the phage UZM3 showed that it does not harbor any known virulence genes and can be considered as a potential therapeutic phage to be used against B. fragilis infections.


Assuntos
Infecções Bacterianas , Bacteriófagos , Humanos , Bacteriófagos/genética , Bacteroides fragilis , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
5.
Antibiotics (Basel) ; 11(2)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35203870

RESUMO

There are real concerns that Neisseria gonorrhoeae may become untreatable in the near future due to the rapid emergence of antimicrobial resistance. Alternative therapies are thus urgently required. Bacteriophages active against N. gonorrhoeae could play an important role as an antibiotic-sparing therapy. To the best of our knowledge, no bacteriophages active against N. gonorrhoeae have ever been found. The aim of this study was to screen for bacteriophages able to lyse N. gonorrhoeae in oropharyngeal and anorectal swabs of 74 men who have sex with men attending a sexual health clinic in Antwerp, Belgium. We screened 210 swabs but were unable to identify an anti-gonococcal bacteriophage. This is the first report of a pilot screening that systematically searched for anti-gonococcal phages directly from clinical swabs. Further studies may consider screening for phages at other anatomical sites (e.g., stool samples, urine) or in environmental settings (e.g., toilet sewage water of sex clubs or sexually transmitted infection clinics) where N. gonorrhoeae can be found.

6.
Viruses ; 13(8)2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34452408

RESUMO

In times where only a few novel antibiotics are to be expected, antimicrobial resistance remains an expanding global health threat. In case of chronic infections caused by therapy-resistant pathogens, physicians have limited therapeutic options, which are often associated with detrimental consequences for the patient. This has resulted in a renewed interest in alternative strategies, such as bacteriophage (phage) therapy. However, there are still important hurdles that currently impede the more widespread implementation of phage therapy in clinical practice. First, the limited number of good-quality case series and clinical trials have failed to show the optimal application protocol in terms of route of administration, frequency of administration, treatment duration and phage titer. Second, there is limited information on the systemic effects of phage therapy. Finally, in the past, phage therapy has been applied intuitively in terms of the selection of phages and their combination as parts of phage cocktails. This has led to an enormous heterogeneity in previously published studies, resulting in a lack of reliable safety and efficacy data for phage therapy. We hereby present a study protocol that addresses these scientific hurdles using a multidisciplinary approach, bringing together the experience of clinical, pharmaceutical and molecular microbiology experts.


Assuntos
Infecções Bacterianas/terapia , Implementação de Plano de Saúde/métodos , Implementação de Plano de Saúde/organização & administração , Infecção Persistente/terapia , Terapia por Fagos/métodos , Protocolos Clínicos , Farmacorresistência Bacteriana Múltipla , Humanos , Equipe de Assistência ao Paciente , Infecção Persistente/microbiologia
7.
Viruses ; 13(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466377

RESUMO

Bacteriophages are a promising therapeutic strategy among cystic fibrosis and lung-transplanted patients, considering the high frequency of colonization/infection caused by pandrug-resistant bacteria. However, little clinical data are available regarding the use of phages for infections with Achromobacter xylosoxidans. A 12-year-old lung-transplanted cystic fibrosis patient received two rounds of phage therapy because of persistent lung infection with pandrug-resistant A. xylosoxidans. Clinical tolerance was perfect, but initial bronchoalveolar lavage (BAL) still grew A. xylosoxidans. The patient's respiratory condition slowly improved and oxygen therapy was stopped. Low-grade airway colonization by A. xylosoxidans persisted for months before samples turned negative. No re-colonisation occurred more than two years after phage therapy was performed and imipenem treatment was stopped. Whole genome sequencing indicated that the eight A. xylosoxidans isolates, collected during phage therapy, belonged to four delineated strains, whereby one had a stop mutation in a gene for a phage receptor. The dynamics of lung colonisation were documented by means of strain-specific qPCRs on different BALs. We report the first case of phage therapy for A. xylosoxidans lung infection in a lung-transplanted patient. The dynamics of airway colonization was more complex than deduced from bacterial culture, involving phage susceptible as well as phage resistant strains.


Assuntos
Achromobacter denitrificans/efeitos dos fármacos , Fibrose Cística/microbiologia , Infecções por Bactérias Gram-Negativas/terapia , Terapia por Fagos , Pneumonia Bacteriana/terapia , Antibacterianos/farmacologia , Criança , Fibrose Cística/cirurgia , Farmacorresistência Bacteriana , Humanos , Pulmão/efeitos dos fármacos , Pulmão/microbiologia , Transplante de Pulmão/efeitos adversos , Masculino , Sequenciamento Completo do Genoma
8.
Viruses ; 12(12)2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321823

RESUMO

Non-typhoidal Salmonella present a major threat to animal and human health as food-borne infectious agents. We characterized 91 bacterial isolates from Armenia and Georgia in detail, using a suite of assays including conventional microbiological methods, determining antimicrobial susceptibility profiles, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, serotyping (using the White-Kauffmann-Le Minor scheme) and genotyping (repetitive element sequence-based PCR (rep-PCR)). No less than 61.5% of the isolates were shown to be multidrug-resistant. A new antimicrobial treatment strategy is urgently needed. Phage therapy, the therapeutic use of (bacterio-) phages, the bacterial viruses, to treat bacterial infections, is increasingly put forward as an additional tool for combatting antibiotic resistant infections. Therefore, we used this representative set of well-characterized Salmonella isolates to analyze the therapeutic potential of eleven single phages and selected phage cocktails from the bacteriophage collection of the Eliava Institute (Georgia). All isolates were shown to be susceptible to at least one of the tested phage clones or their combinations. In addition, genome sequencing of these phages revealed them as members of existing phage genera (Felixounavirus, Seunavirus, Viunavirus and Tequintavirus) and did not show genome-based counter indications towards their applicability against non-typhoidal Salmonella in a phage therapy or in an agro-food setting.


Assuntos
Bacteriófagos/fisiologia , Interações Hospedeiro-Patógeno , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Salmonella/virologia , Animais , Antibacterianos/farmacologia , Bacteriófagos/ultraestrutura , Doenças Transmitidas por Alimentos/microbiologia , Geografia Médica , República da Geórgia/epidemiologia , Humanos , Filogenia , Salmonella/classificação , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Infecções por Salmonella/transmissão
10.
Viruses ; 11(10)2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31548497

RESUMO

Bacteriophage therapy has recently attracted increased interest, particularly in difficult-to-treat infections. Although it is not a novel concept, standardized treatment guidelines are currently lacking. We present the first steps towards the establishment of a "multidisciplinary phage task force" (MPTF) and a standardized treatment pathway, based on our experience of four patients with severe musculoskeletal infections. After review of their medical history and current clinical status, a multidisciplinary team found four patients with musculoskeletal infections eligible for bacteriophage therapy within the scope of Article 37 of the Declaration of Helsinki. Treatment protocols were set up in collaboration with phage scientists and specialists. Based on the isolated pathogens, phage cocktails were selected and applied intraoperatively. A draining system allowed postoperative administration for a maximum of 10 days, 3 times per day. All patients received concomitant antibiotics and their clinical status was followed daily during phage therapy. No severe side-effects related to the phage application protocol were noted. After a single course of phage therapy with concomitant antibiotics, no recurrence of infection with the causative strains occurred, with follow-up periods ranging from 8 to 16 months. This study presents the successful outcome of bacteriophage therapy using a standardized treatment pathway for patients with severe musculoskeletal infection. A multidisciplinary team approach in the form of an MPTF is paramount in this process.


Assuntos
Bacteriófagos , Doenças Musculoesqueléticas/terapia , Equipe de Assistência ao Paciente/normas , Terapia por Fagos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Bactérias/virologia , Bacteriólise , Protocolos Clínicos/normas , Terapia Combinada , Farmacorresistência Bacteriana Múltipla , Humanos , Testes de Sensibilidade Microbiana , Doenças Musculoesqueléticas/microbiologia , Osteomielite/microbiologia , Osteomielite/terapia , Período Perioperatório , Terapia por Fagos/métodos , Terapia por Fagos/normas , Resultado do Tratamento
11.
Viruses ; 10(4)2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29621199

RESUMO

Phage therapy is increasingly put forward as a "new" potential tool in the fight against antibiotic resistant infections. During the "Centennial Celebration of Bacteriophage Research" conference in Tbilisi, Georgia on 26-29 June 2017, an international group of phage researchers committed to elaborate an expert opinion on three contentious phage therapy related issues that are hampering clinical progress in the field of phage therapy. This paper explores and discusses bacterial phage resistance, phage training and the presence of prophages in bacterial production strains while reviewing relevant research findings and experiences. Our purpose is to inform phage therapy stakeholders such as policy makers, officials of the competent authorities for medicines, phage researchers and phage producers, and members of the pharmaceutical industry. This brief also points out potential avenues for future phage therapy research and development as it specifically addresses those overarching questions that currently call for attention whenever phages go into purification processes for application.


Assuntos
Infecções Bacterianas/terapia , Bacteriófagos/fisiologia , Terapia por Fagos , Animais , Bactérias/genética , Bactérias/virologia , Infecções Bacterianas/microbiologia , Microbiologia Ambiental , Prova Pericial , Microbiologia de Alimentos , Humanos , Terapia por Fagos/métodos
12.
Methods Mol Biol ; 1693: 233-252, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29119444

RESUMO

In this chapter we review bacteriophage production requirements to help institutions, which wish to manufacture bacteriophage products for human use in compliance with the applicable regulatory expectancies, defining production processes and implementing relevant controls ensuring quality, safety, and efficacy of the final products. The information disclosed in this chapter can also serve as a basis for discussions with competent authorities regarding the development of expedited bacteriophage product development and licensing pathways, including relevant and pragmatic requirements, and allowing for the full exploitation of bacteriophages as natural controllers of bacterial populations.


Assuntos
Antibacterianos , Bacteriófagos/crescimento & desenvolvimento , Terapia Biológica , Regulamentação Governamental , Licenciamento , Infecções Bacterianas/prevenção & controle , Humanos
13.
Methods Mol Biol ; 1693: 99-110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29119435

RESUMO

Correctly designed bacteriophage therapeutics are the cornerstone for a successful outcome of bacteriophage therapy. Here we overview strategies on how to choose bacteriophages and their bacterial hosts at different steps of a bacteriophage cocktail development in order to comply with all quality and safety requirements based on the already existing essentially empirical experience in bacteriophage therapy and current accomplishments in modern biomedical sciences. A modification of the classic Appelmans' method (1922) to assess stability of bacteriophage activity in liquid media is presented in order to improve the overall performance of therapeutic bacteriophages individually and collectively in the cocktail.


Assuntos
Bactérias/virologia , Infecções Bacterianas/prevenção & controle , Bacteriófagos/fisiologia , Infecções Bacterianas/microbiologia , Guias como Assunto , Humanos
14.
PLoS One ; 12(7): e0182121, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28750102

RESUMO

Bacteriophages could be used along with burn wound care products to enhance antimicrobial pressure during treatment. However, some of the components of the topical antimicrobials that are traditionally used for the prevention and treatment of burn wound infection might affect the activity of phages. Therefore, it is imperative to determine the counteraction of therapeutic phage preparations by burn wound care products before application in patients. Five phages, representatives of two morphological families (Myoviridae and Podoviridae) and active against 3 common bacterial burn wound pathogens (Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus) were tested against 13 different products commonly used in the treatment of burn wounds. The inactivation of the phages was quite variable for different phages and different products. Majority of the anti-infective products affected phage activity negatively either immediately or in the course of time, although impact was not always significant. Products with high acidity had the most adverse effect on phages. Our findings demonstrate that during combined treatment the choice of phages and wound care products must be carefully defined in advance.


Assuntos
Bacteriófagos/fisiologia , Queimaduras/virologia , Infecção dos Ferimentos/virologia , Anti-Infecciosos/química , Concentração de Íons de Hidrogênio
16.
PLoS One ; 11(5): e0156237, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27223476

RESUMO

Multidrug resistant Acinetobacter baumannii and its closely related species A. pittii and A. nosocomialis, all members of the Acinetobacter calcoaceticus-baumannii (Acb) complex, are a major cause of hospital acquired infection. In the burn wound center of the Queen Astrid military hospital in Brussels, 48 patients were colonized or infected with Acb complex over a 52-month period. We report the molecular epidemiology of these organisms, their clinical impact and infection control measures taken. A representative set of 157 Acb complex isolates was analyzed using repetitive sequence-based PCR (rep-PCR) (DiversiLab) and a multiplex PCR targeting OXA-51-like and OXA-23-like genes. We identified 31 rep-PCR genotypes (strains). Representatives of each rep-type were identified to species by rpoB sequence analysis: 13 types to A. baumannii, 10 to A. pittii, and 3 to A. nosocomialis. It was assumed that isolates that belonged to the same rep-type also belonged to the same species. Thus, 83.4% of all isolates were identified to A. baumannii, 9.6% to A. pittii and 4.5% to A. nosocomialis. We observed 12 extensively drug resistant Acb strains (10 A. baumannii and 2 A. nosocomialis), all carbapenem-non-susceptible/colistin-susceptible and imported into the burn wound center through patients injured in North Africa. The two most prevalent rep-types 12 and 13 harbored an OXA-23-like gene. Multilocus sequence typing allocated them to clonal complex 1 corresponding to EU (international) clone I. Both strains caused consecutive outbreaks, interspersed with periods of apparent eradication. Patients infected with carbapenem resistant A. baumannii were successfully treated with colistin/rifampicin. Extensive infection control measures were required to eradicate the organisms. Acinetobacter infection and colonization was not associated with increased attributable mortality.


Assuntos
Infecções por Acinetobacter/tratamento farmacológico , Infecções por Acinetobacter/epidemiologia , Acinetobacter baumannii/isolamento & purificação , Acinetobacter calcoaceticus/isolamento & purificação , Queimaduras/microbiologia , Colistina/uso terapêutico , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/genética , Acinetobacter calcoaceticus/genética , Adolescente , Adulto , África do Norte/epidemiologia , Idoso , Idoso de 80 Anos ou mais , Técnicas de Tipagem Bacteriana , Bélgica/epidemiologia , Criança , Pré-Escolar , Farmacorresistência Bacteriana , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase Multiplex , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Resultado do Tratamento , Adulto Jovem
19.
Pharm Res ; 32(7): 2173-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25585954

RESUMO

The worldwide antibiotic crisis has led to a renewed interest in phage therapy. Since time immemorial phages control bacterial populations on Earth. Potent lytic phages against bacterial pathogens can be isolated from the environment or selected from a collection in a matter of days. In addition, phages have the capacity to rapidly overcome bacterial resistances, which will inevitably emerge. To maximally exploit these advantage phages have over conventional drugs such as antibiotics, it is important that sustainable phage products are not submitted to the conventional long medicinal product development and licensing pathway. There is a need for an adapted framework, including realistic production and quality and safety requirements, that allows a timely supplying of phage therapy products for 'personalized therapy' or for public health or medical emergencies. This paper enumerates all phage therapy product related quality and safety risks known to the authors, as well as the tests that can be performed to minimize these risks, only to the extent needed to protect the patients and to allow and advance responsible phage therapy and research.


Assuntos
Infecções Bacterianas , Bacteriófagos/crescimento & desenvolvimento , Terapia Biológica , Farmacorresistência Bacteriana Múltipla , Infecções Bacterianas/microbiologia , Infecções Bacterianas/terapia , Bacteriófagos/isolamento & purificação , Terapia Biológica/efeitos adversos , Terapia Biológica/normas , Terapia Biológica/tendências , Humanos
20.
PLoS One ; 9(8): e104853, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25111143

RESUMO

Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively), high burst size (125 and 145, respectively), stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.


Assuntos
Acinetobacter baumannii/virologia , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Bacteriófagos/genética , Bacteriófagos/crescimento & desenvolvimento , Técnicas de Cultura , Genoma Viral/genética , Especificidade de Hospedeiro , Anotação de Sequência Molecular , Fenótipo , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...