Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Proteomics ; 15: 10, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29527140

RESUMO

BACKGROUND: Metabolic diseases such as obesity and diabetes are associated with changes in high-density lipoprotein (HDL) particles, including changes in particle size and protein composition, often resulting in abnormal function. Recent studies suggested that patients with non-alcoholic fatty liver disease (NAFLD), including individuals with non-alcoholic steatohepatitis (NASH), have smaller HDL particles when compared to individuals without liver pathologies. However, no studies have investigated potential changes in HDL particle protein composition in patients with NAFLD, in addition to changes related to obesity, to explore putative functional changes of HDL which may increase the risk of cardiovascular complications. METHODS: From a cohort of morbidly obese females who were diagnosed with simple steatosis (SS), NASH, or normal liver histology, we selected five matched individuals from each condition for a preliminary pilot HDL proteome analysis. HDL particles were enriched using size-exclusion chromatography, and the proteome of the resulting fraction was analyzed by liquid chromatography tandem mass spectrometry. Differences in the proteomes between the three conditions (normal, SS, NASH) were assessed using label-free quantitative analysis. Gene ontology term analysis was performed to assess the potential impact of proteomic changes on specific functions of HDL particles. RESULTS: Of the 95 proteins identified, 12 proteins showed nominally significant differences between the three conditions. Gene ontology term analysis revealed that severity of the liver pathology may significantly impact the anti-thrombotic functions of HDL particles, as suggested by changes in the abundance of HDL-associated proteins such as antithrombin III and plasminogen. CONCLUSIONS: The pilot data from this study suggest that changes in the HDL proteome may impact the functionality of HDL particles in NAFLD and NASH patients. These proteome changes may alter cardio-protective properties of HDL, potentially contributing to the increased cardiovascular disease risk in affected individuals. Further validation of these protein changes by orthogonal approaches is key to confirming the role of alterations in the HDL proteome in NAFLD and NASH. This will help elucidate the mechanistic effects of the altered HDL proteome on cardioprotective properties of HDL particles.

2.
JAMA Otolaryngol Head Neck Surg ; 142(9): 866-72, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27311106

RESUMO

IMPORTANCE: Sensorineural hearing loss (SNHL) is commonly caused by conditions that affect cochlear structures or the auditory nerve, and the genes identified as causing SNHL to date only explain a fraction of the overall genetic risk for this debilitating disorder. It is likely that other genes and mutations also cause SNHL. OBJECTIVE: To identify a candidate gene that causes bilateral, symmetric, progressive SNHL in a large multigeneration family of Northern European descent. DESIGN, SETTING, AND PARTICIPANTS: In this prospective genotype and phenotype study performed from January 1, 2006, through April 1, 2016, a 6-generation family of Northern European descent with 19 individuals having reported early-onset hearing loss suggestive of an autosomal dominant inheritance were studied at a tertiary academic medical center. In addition, 179 unrelated adult individuals with SNHL and 186 adult individuals reporting nondeafness were examined. MAIN OUTCOMES AND MEASURES: Sensorineural hearing loss. RESULTS: Nine family members (5 women [55.6%]) provided clinical audiometric and medical records that documented hearing loss. The hearing loss is characterized as bilateral, symmetric, progressive SNHL that reached severe to profound loss in childhood. Audiometric configurations demonstrated a characteristic dip at 1000 to 2000 Hz. All affected family members wear hearing aids or have undergone cochlear implantation. Exome sequencing and linkage and association analyses identified a fully penetrant sequence variant (rs35725509) on chromosome 12q21 (logarithm of odds, 3.3) in the TMTC2 gene region that segregates with SNHL in this family. This gene explains the SNHL occurrence in this family. The variant is also associated with SNHL in a cohort of 363 unrelated individuals (179 patients with confirmed SNHL and 184 controls, P = 7 × 10-4). CONCLUSIONS AND RELEVANCE: A previously uncharacterized gene, TMTC2, has been identified as a candidate for causing progressive SNHL in humans. This finding identifies a novel locus that causes autosomal dominant SNHL and therefore a more detailed understanding of the genetic basis of SNHL. Because TMTC2 has not been previously reported to regulate auditory function, the discovery reveals a potentially new, uncharacterized mechanism of hearing loss.


Assuntos
Proteínas de Transporte/genética , Progressão da Doença , Perda Auditiva Bilateral/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Mutação , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos Par 12 , Feminino , Genes Dominantes , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Estudos Prospectivos , População Branca/genética , Adulto Jovem
3.
Invest Ophthalmol Vis Sci ; 54(10): 6646-54, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24045990

RESUMO

PURPOSE: The goal of this study was to functionally evaluate three previously uncharacterized heat shock factor protein 4 (HSF4) mutations (c.595_599delGGGCC, c.1213C>T, c.1327+4A>G) encoding mutant HSF4 proteins (G199EfsX15, R405X, and M419GfsX29) with missing C-terminal ends. These HSF4 mutations were previously identified in families with congenital autosomal recessive cataracts. METHODS: FLAG-tagged recombinant wild type (WT) and mutant HSF4 proteins were analyzed using the protein stability assay, cellular immunofluorescence, Western blotting, electrophoretic mobility shift assay (EMSA), and reporter activation. RESULTS: HSF4 mutant proteins did not differ in the protein turnover rate when compared with WT HSF4. Immunofluorescence revealed that WT and mutant HSF4 proteins were properly trafficked to the nucleus. EMSA analysis revealed that the G199EfsX15 and M419GfsX29 proteins exhibited decreased heat shock element (HSE)-mediated DNA binding, whereas the R405X mutant exhibited increased HSE-mediated DNA binding when compared with WT HSF4. All three HSF4 mutant proteins exhibited abolished HSE-mediated luciferase reporter activation. Detailed evaluation of the C-terminal region identified three novel domains: two activation domains and one repression domain. CONCLUSIONS: The three HSF4 autosomal recessive mutations evaluated here result in a loss of HSF4 function due to a loss of regulatory domains present at the C-terminal end. These findings collectively indicate that the transcriptional activation of HSF4 is mediated by interactions between activator and repressor domains within the C-terminal end.


Assuntos
Catarata/congênito , Proteínas de Ligação a DNA/genética , DNA/genética , Mutação , Fatores de Transcrição/genética , Western Blotting , Catarata/genética , Catarata/metabolismo , Células Cultivadas , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Genes Recessivos , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico , Humanos , Fatores de Transcrição/metabolismo , Ativação Transcricional
4.
Mamm Genome ; 22(11-12): 661-73, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21858719

RESUMO

Lens opacity 13 (lop13) is a spontaneous, autosomal recessive mouse mutant that exhibits nuclear cataracts. Histological analysis revealed swollen lens fiber cells and the presence of bladder cells within the lens cortex, as well as morgagnian globules and liquefied material at the lens posterior. At 3 months of age, in addition to cataracts, lop13 mice also develop persistent skin wounds. Linkage analysis assigned the lop13 locus to a 1.1-Mb region on mouse Chr 15, encompassing 19 candidate genes. Sequence analysis identified a C3112T mutation in exon 18 of Sterol Regulatory Element Binding-Transcription Factor 2 (Srebf2) resulting in the R1038C substitution of a highly conserved arginine within the Srebf2 regulatory domain. Srebf2 belongs to a family of membrane-bound basic helix-loop-helix leucine zipper transcription factors that control the expression of genes involved in the biosynthesis and uptake of cholesterol and fatty acids. The lack of complementation observed in Srebf2 ( lop13/GT ) compound heterozygotes carrying the Srebf2 gene trapped allele (Srebf2 ( GT )) provides genetic evidence that the identified C3112T substitution in Srebf2 is responsible for the lop13 phenotype. Gas chromatography analysis identified lower levels of cholesterol in the lop13 brain, liver, and lens when compared to wild-type mice. These findings suggest that lop13 is a hypomorphic mutation in Srebf2. As such, the lop13 mouse presents an invaluable in vivo model for studying the contribution of Srebf2 and cholesterol to maintaining the homeostasis of the lens and skin.


Assuntos
Catarata/genética , Catarata/patologia , Pele/patologia , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Animais , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Catarata/metabolismo , Colesterol/metabolismo , Feminino , Genótipo , Cristalino/metabolismo , Cristalino/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...