Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(9): e0136048, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26367538

RESUMO

The present study aimed at detecting the exogenously applied probiotic Lactobacillus farciminis in rats, after exposure to IBS-like chronic stress, based on 4-day Water Avoidance Stress (WAS). The presence of L. farciminis in both ileal and colonic mucosal tissues was demonstrated by FISH and qPCR, with ileum as the preferential niche, as for the SFB population. A different spatial distribution of the probiotic was observed: in the ileum, bacteria were organized in micro-colonies more or less close to the epithelium whereas, in the colon, they were mainly visualized far away from the epithelium. When rats were submitted to WAS, the L. farciminis population substantially decreased in both intestinal regions, due to a stress-induced increase in colonic motility and defecation, rather than a modification of bacterial binding to the intestinal mucin Muc2.


Assuntos
Mucosa Intestinal/microbiologia , Lactobacillus/patogenicidade , Estresse Psicológico/microbiologia , Animais , Colo/microbiologia , Colo/ultraestrutura , Íleo/microbiologia , Íleo/ultraestrutura , Mucosa Intestinal/ultraestrutura , Masculino , Mucina-2/metabolismo , Ligação Proteica , Ratos , Ratos Wistar , Estresse Psicológico/patologia
2.
Am J Physiol Gastrointest Liver Physiol ; 307(4): G420-9, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24970779

RESUMO

Despite well-known intestinal epithelial barrier impairment and visceral hypersensitivity in irritable bowel syndrome (IBS) patients and IBS-like models, structural and physical changes in the mucus layer remain poorly understood. Using a water avoidance stress (WAS) model, we aimed at evaluating whether 1) WAS modified gut permeability, visceral sensitivity, mucin expression, biochemical structure of O-glycans, and related mucus physical properties, and 2) whether Lactobacillus farciminis treatment prevented these alterations. Wistar rats received orally L. farciminis or vehicle for 14 days; at day 10, they were submitted to either sham or 4-day WAS. Intestinal paracellular permeability and visceral sensitivity were measured in vivo. The number of goblet cells and Muc2 expression were evaluated by histology and immunohistochemistry, respectively. Mucosal adhesion of L. farciminis was determined ex situ. The mucin O-glycosylation profile was obtained by mass spectrometry. Surface imaging of intestinal mucus was performed at nanoscale by atomic force microscopy. WAS induced gut hyperpermeability and visceral hypersensitivity but did not modify either the number of intestinal goblet cells or Muc2 expression. In contrast, O-glycosylation of mucins was strongly affected, with the appearance of elongated polylactosaminic chain containing O-glycan structures, associated with flattening and loss of the mucus layer cohesive properties. L. farciminis bound to intestinal Muc2 and prevented WAS-induced functional alterations and changes in mucin O-glycosylation and mucus physical properties. WAS-induced functional changes were associated with mucus alterations resulting from a shift in O-glycosylation rather than from changes in mucin expression. L. farciminis treatment prevented these alterations, conferring epithelial and mucus barrier strengthening.


Assuntos
Mucosa Intestinal/metabolismo , Mucina-2/biossíntese , Probióticos/uso terapêutico , Estresse Psicológico/fisiopatologia , Animais , Colo/metabolismo , Corticosterona/sangue , Glicosilação , Células Caliciformes/fisiologia , Mucosa Intestinal/microbiologia , Lactobacillus/metabolismo , Masculino , Muco/metabolismo , Permeabilidade , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA