Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 14(1): 85-92, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21076425

RESUMO

Parkinson's disease is a common neurodegenerative disorder characterized by a profound motor disability that is traceable to the emergence of synchronous, rhythmic spiking in neurons of the external segment of the globus pallidus (GPe). The origins of this pathophysiology are poorly defined for the generation of pacemaking. After the induction of a parkinsonian state in mice, there was a progressive decline in autonomous GPe pacemaking, which normally serves to desynchronize activity. The loss was attributable to the downregulation of an ion channel that is essential in pacemaking, the hyperpolarization and cyclic nucleotide-gated (HCN) channel. Viral delivery of HCN2 subunits restored pacemaking and reduced burst spiking in GPe neurons. However, the motor disability induced by dopamine (DA) depletion was not reversed, suggesting that the loss of pacemaking was a consequence, rather than a cause, of key network pathophysiology, a conclusion that is consistent with the ability of L-type channel antagonists to attenuate silencing after DA depletion.


Assuntos
Canalopatias/fisiopatologia , Globo Pálido/fisiopatologia , Canais Iônicos/fisiologia , Neurônios/fisiologia , Doença de Parkinson/fisiopatologia , Animais , Cálcio/metabolismo , Dependovirus/genética , Modelos Animais de Doenças , Dopamina/metabolismo , Regulação para Baixo , Vetores Genéticos/administração & dosagem , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microinjeções , Neurônios/metabolismo , Oxidopamina , Canais de Potássio , Substância Negra/metabolismo
2.
J Neurosci ; 27(49): 13552-66, 2007 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-18057213

RESUMO

Neurons in the external segment of the globus pallidus (GPe) are autonomous pacemakers that are capable of sustained fast spiking. The cellular and molecular determinants of pacemaking and fast spiking in GPe neurons are not fully understood, but voltage-dependent Na+ channels must play an important role. Electrophysiological studies of these neurons revealed that macroscopic activation and inactivation kinetics of their Na+ channels were similar to those found in neurons lacking either autonomous activity or the capacity for fast spiking. What was distinctive about GPe Na+ channels was a prominent resurgent gating mode. This mode was significantly reduced in GPe neurons lacking functional Nav1.6 channels. In these Nav1.6 null neurons, pacemaking and the capacity for fast spiking were impaired, as was the ability to follow stimulation frequencies used to treat Parkinson's disease (PD). Simulations incorporating Na+ channel models with and without prominent resurgent gating suggested that resurgence was critical to fast spiking but not to pacemaking, which appeared to be dependent on the positioning of Na+ channels in spike-initiating regions of the cell. These studies not only shed new light on the mechanisms underlying spiking in GPe neurons but also suggest that electrical stimulation therapies in PD are unlikely to functionally inactivate neurons possessing Nav1.6 Na+ channels with prominent resurgent gating.


Assuntos
Potenciais de Ação/fisiologia , Globo Pálido/fisiologia , Ativação do Canal Iônico/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Canais de Sódio/fisiologia , Potenciais de Ação/genética , Animais , Simulação por Computador , Ativação do Canal Iônico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Canais de Sódio/deficiência , Canais de Sódio/genética , Fatores de Tempo
3.
Nature ; 447(7148): 1081-6, 2007 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-17558391

RESUMO

Why dopamine-containing neurons of the brain's substantia nigra pars compacta die in Parkinson's disease has been an enduring mystery. Our studies suggest that the unusual reliance of these neurons on L-type Ca(v)1.3 Ca2+ channels to drive their maintained, rhythmic pacemaking renders them vulnerable to stressors thought to contribute to disease progression. The reliance on these channels increases with age, as juvenile dopamine-containing neurons in the substantia nigra pars compacta use pacemaking mechanisms common to neurons not affected in Parkinson's disease. These mechanisms remain latent in adulthood, and blocking Ca(v)1.3 Ca2+ channels in adult neurons induces a reversion to the juvenile form of pacemaking. Such blocking ('rejuvenation') protects these neurons in both in vitro and in vivo models of Parkinson's disease, pointing to a new strategy that could slow or stop the progression of the disease.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Modelos Animais de Doenças , Modelos Neurológicos , Neurônios/citologia , Neurônios/patologia , Doença de Parkinson/patologia , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Envelhecimento , Animais , Antiparkinsonianos/farmacologia , Cálcio/metabolismo , Cálcio/farmacologia , Canais de Cálcio Tipo L/deficiência , Canais de Cálcio Tipo L/genética , Dendritos/metabolismo , Progressão da Doença , Dopamina/metabolismo , Condutividade Elétrica , Deleção de Genes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/prevenção & controle , Rotenona/farmacologia , Substância Negra/citologia , Substância Negra/metabolismo , Substância Negra/patologia
4.
Curr Opin Neurobiol ; 15(3): 312-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15916893

RESUMO

Autonomous pacemakers are crucial elements in many neural circuits. This is particularly true for the basal ganglia. This richly interconnected group of nuclei is rife with both fast- and slow-spiking pacemakers. Our understanding of the ionic mechanisms underlying pacemaking in these neurons is rapidly evolving, yielding new insights into the normal functioning of this network and how it goes awry in pathological states such as Parkinson's disease.


Assuntos
Gânglios da Base/fisiologia , Relógios Biológicos/fisiologia , Canais Iônicos/fisiologia , Modelos Neurológicos , Sinapses/fisiologia , Ativação do Canal Iônico/fisiologia , Neurônios/fisiologia
5.
J Neurosci ; 24(44): 9921-32, 2004 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-15525777

RESUMO

The globus pallidus (GP) is a critical component of the basal ganglia circuitry controlling motor behavior. Dysregulation of GP activity has been implicated in a number of psychomotor disorders, including Parkinson's disease (PD), in which a cardinal feature of the pathophysiology is an alteration in the pattern and synchrony of discharge in GP neurons. Yet the determinants of this activity in GP neurons are poorly understood. To help fill this gap, electrophysiological, molecular, and computational approaches were used to identify and characterize GABAergic GP neurons in tissue slices from rodents. In vitro, GABAergic GP neurons generate a regular, autonomous, single-spike pacemaker activity. Hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels make an important contribution to this process: their blockade with ZD7288 significantly slowed discharge rate and decreased its regularity. HCN currents evoked by somatic voltage clamp had fast and slow components. Single-cell RT-PCR and immunohistochemical approaches revealed robust expression of HCN2 subunits as well as significant levels of HCN1 subunits in GABAergic GP neurons. Transient activation of striatal GABAergic input to GP neurons led to a resetting of rhythmic discharge that was dependent on HCN currents. Simulations suggested that the ability of transient striatal GABAergic input to reset pacemaking was dependent on dendritic HCN2/HCN1 channels. Together, these studies show that HCN channels in GABAergic GP neurons are key determinants of the regularity and rate of pacemaking as well as striatal resetting of this activity, implicating HCN channels in the emergence of synchrony in PD.


Assuntos
Potenciais de Ação/fisiologia , Globo Pálido/fisiologia , Canais Iônicos/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Relógios Biológicos/fisiologia , Canais de Cálcio Tipo T/fisiologia , Corpo Estriado/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos , Feminino , Globo Pálido/citologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Vias Neurais/fisiologia , Canais de Potássio , Ratos , Ratos Sprague-Dawley , Fatores de Tempo , Ácido gama-Aminobutírico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA