Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Neuroendocrinol ; 33(7): e13009, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34309094
3.
Nutrients ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266325

RESUMO

Understanding the mechanisms of hunger, satiety and how nutrients affect appetite control is important for successful weight management across the lifecourse. The primary aim of this study was to describe acute appetite control across the lifecourse, comparing age groups (children, adolescents, adults, elderly), weight categories, genders and European sites (Scotland and Greece). Participants (n = 391) consumed four test drinks, varying in composition (15% (normal protein, NP) and 30% (high protein, HP) of energy from protein) and quantity (based on 100% basal metabolic rate (BMR) and 140% BMR), on four separate days in a double-blind randomized controlled study. Ad libitum energy intake (EI), subjective appetite and biomarkers of appetite and metabolism (adults and elderly only) were measured. The adults' appetite was significantly greater than that of the elderly across all drink types (p < 0.004) and in response to drink quantities (p < 0.001). There were no significant differences in EI between age groups, weight categories, genders or sites. Concentrations of glucagon-like peptide 1 (GLP-1) and peptide YY (PYY) were significantly greater in the elderly than the adults (p < 0.001). Ghrelin and fasting leptin concentrations differed significantly between weight categories, genders and sites (p < 0.05), while GLP-1 and PYY concentrations differed significantly between genders only (p < 0.05). Compared to NP drinks, HP drinks significantly increased postprandial GLP-1 and PYY (p < 0.001). Advanced age was concomitant with reduced appetite and elevated anorectic hormone release, which may contribute to the development of malnutrition. In addition, appetite hormone concentrations differed between weight categories, genders and geographical locations.


Assuntos
Apetite/fisiologia , Desjejum/psicologia , Fome/fisiologia , Adolescente , Adulto , Idoso , Biomarcadores/sangue , Criança , Método Duplo-Cego , Ingestão de Energia/fisiologia , Feminino , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Glucose/metabolismo , Homeostase , Humanos , Masculino , Pessoa de Meia-Idade , Peptídeo YY , Saciação/fisiologia , Inquéritos e Questionários , Adulto Jovem
5.
Physiol Behav ; 207: 41-47, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31034840

RESUMO

This study aimed to determine the relative efficacy of the macronutrients, protein, fat and carbohydrate to induce satiation and satiety in rats in relation to macronutrient activation of neurons in the nucleus of the solitary tract (NTS). Male Sprague Dawley rats were schedule-fed twice a day for 2 h, receiving 100% of daily ad-libitum energy intake. On test day 1, 30 min before the first scheduled meal of the day, rats were gavaged with an 8 kcal isocaloric, isovolumetric solution of a glucose, lipid or peptone macronutrient solution or a non-caloric saline solution. To assess satiation, thirty minutes later rats were given access to food for 2 h and food intake determined. A second 2 h food access period 3 h later was used for assessment of satiety. On the second test day, rats were gavaged as before and killed 90 min after food presentation. Blood was collected for measurement of circulating metabolic markers. Brains were removed for analysis of c-Fos expression by in situ hybridization in the NTS. Rats which received saline consumed a similar amount of food compared to pre-gavage intakes. However, rats gavaged with a caloric macronutrient solution all reduced food intake by 18-20 kcal. Interestingly, the reduction in caloric intake was greater than the caloric value of the macronutrient solution gavaged and was sustained following the second scheduled meal. Quantification by in situ hybridization of c-Fos mRNA expression in the NTS 90 min post-gavage, showed a significant increase with each macronutrient, but was 24-29% higher with a lipid or peptone gavage compared to a glucose gavage. In conclusion, when delivered directly to the stomach, all macronutrients can be equally effective in inducing satiation with significant neuronal activation in the NTS of the hindbrain.


Assuntos
Carboidratos da Dieta/farmacologia , Gorduras na Dieta/farmacologia , Proteínas Alimentares/farmacologia , Saciação/efeitos dos fármacos , Resposta de Saciedade/efeitos dos fármacos , Animais , Peso Corporal/efeitos dos fármacos , Química Encefálica/efeitos dos fármacos , Química Encefálica/genética , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Ingestão de Alimentos , Regulação da Expressão Gênica , Masculino , Refeições , Proteínas Proto-Oncogênicas c-fos/biossíntese , Ratos , Ratos Sprague-Dawley , Núcleo Solitário/citologia , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/fisiologia
6.
Appetite ; 126: 137-146, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29627345

RESUMO

Many pre-clinical models of binge-like eating involve predictable, scheduled, access to a palatable diet high in fat (HF), where access may be preceded by anticipatory behaviour. Here, to introduce spontaneity into the binge-type consumption of palatable diets, mice were allowed 2 h access on a random day once per week and at a random time within an 8 h window either side of the transition from dark phase to light phase. Despite normal intake of a stock diet prior to unpredictable access to HF diet, mice immediately initiated a substantial eating episode when presented with HF diet. Following this consumption, compensatory hypophagia was observed relative to stock diet-fed controls, and cumulative energy intakes converged. There were no effects of HF diet on body weight or body composition over a 12-week period. Binge-like consumption was also observed on unpredictable access to the complete liquid diet, chocolate Ensure, but not with a 10% sucrose solution. Binge-like responses to unpredictable access to HF diet or Ensure were similar in male and female mice, although there were effects of sex on caloric consumption from stock diet in the compensatory period following palatable diet intake, with higher intakes in females. The timing of the 2h access period relative to light phase transition affected intake of palatable diets, but less robustly than the equivalent effect on stock diet intake during the same timed periods - the diurnal patterning of energy intake was diet sensitive. The large spontaneous binge-like consumption on unpredictable access to either solid or liquid palatable diets in mice of either sex offers the potential to combine these attributes with other manipulations where a developing obesity is part of the binge-like eating phenotype.


Assuntos
Transtorno da Compulsão Alimentar/psicologia , Dieta Hiperlipídica/psicologia , Ingestão de Alimentos/psicologia , Comportamento Alimentar/psicologia , Animais , Dieta Hiperlipídica/métodos , Modelos Animais de Doenças , Camundongos , Fatores de Tempo
7.
Appetite ; 117: 234-246, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28687371

RESUMO

Food structure contributes to the induction of satiation and the maintenance of satiety following intake of a meal. There is evidence from human studies that protein-crosslinking of a milk-protein based meal may enhance satiety, but the mechanism underpinning this effect is unknown. We investigated whether a rat model would respond in a similar manner and might provide mechanistic insight into enhanced satiety by structural modification of a food source. Rats were schedule fed a modified AIN-93M based diet in a liquid form or protein-crosslinked to produce a soft-solid form. This was compared to a modified AIN-93M solid diet. Average daily caloric intake was in the order solid > liquid > crosslinked. Body composition was unaltered in the solid group, but there was a loss of fat in the liquid group and a loss of lean and fat tissue in the crosslinked group. Compared to rats fed a solid diet, acute responses in circulating GLP-1, leptin and insulin were eliminated or attenuated in rats fed a liquid or crosslinked diet. Quantification of homeostatic neuropeptide expression in the hypothalamus showed elevated levels of Npy and Agrp in rats fed the liquid diet. Measurement of food intake after a scheduled meal indicated that reduced energy intake of liquid and crosslinked diets is not due to enhancement of satiety. When continuously available ad-libitum, rats fed a liquid diet showed reduced weight gain despite greater 24 h caloric intake. During the dark phase, caloric intake was reduced, but compensated for during the light phase. We conclude that structural modification from a liquid to a solidified state is beneficial for satiation, with less of a detrimental effect on metabolic parameters and homeostatic neuropeptides.


Assuntos
Dieta Redutora , Ingestão de Energia , Hipotálamo/metabolismo , Proteínas do Leite/administração & dosagem , Neurônios/metabolismo , Resposta de Saciedade , Transglutaminases/metabolismo , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Manipulação de Alimentos , Regulação da Expressão Gênica , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Insulina/sangue , Insulina/metabolismo , Secreção de Insulina , Leptina/sangue , Leptina/metabolismo , Masculino , Proteínas do Leite/efeitos adversos , Proteínas do Leite/química , Proteínas do Leite/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Sobrepeso/sangue , Sobrepeso/dietoterapia , Sobrepeso/metabolismo , Sobrepeso/prevenção & controle , Ratos Sprague-Dawley , Aumento de Peso , Redução de Peso
8.
Dis Model Mech ; 9(11): 1245-1255, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27821603

RESUMO

A multi-dimensional strategy to tackle the global obesity epidemic requires an in-depth understanding of the mechanisms that underlie this complex condition. Much of the current mechanistic knowledge has arisen from preclinical research performed mostly, but not exclusively, in laboratory mouse and rat strains. These experimental models mimic certain aspects of the human condition and its root causes, particularly the over-consumption of calories and unbalanced diets. As with human obesity, obesity in rodents is the result of complex gene-environment interactions. Here, we review the traditional monogenic models of obesity, their contemporary optogenetic and chemogenetic successors, and the use of dietary manipulations and meal-feeding regimes to recapitulate the complexity of human obesity. We critically appraise the strengths and weaknesses of these different models to explore the underlying mechanisms, including the neural circuits that drive behaviours such as appetite control. We also discuss the use of these models for testing and screening anti-obesity drugs, beneficial bio-actives, and nutritional strategies, with the goal of ultimately translating these findings for the treatment of human obesity.


Assuntos
Pesquisa Biomédica , Obesidade/patologia , Animais , Dieta , Modelos Animais de Doenças , Humanos , Modelos Genéticos , Obesidade/genética , Pesquisa Translacional Biomédica
9.
Curr Obes Rep ; 5(1): 106-12, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26762623

RESUMO

Effective strategies to combat recent rises in obesity levels are limited. The accumulation of excess body fat results when energy intake exceeds that expended. Energy balance is controlled by hypothalamic responses, but these can be overridden by hedonic/reward brain systems. This override, combined with unprecedented availability of cheap, energy-dense, palatable foods, may partly explain the increase in overweight and obesity. The complexity of the processes that regulate feeding behaviour has driven the need for further fundamental research. Full4Health is an EU-funded project conceived to advance our understanding of hunger and satiety mechanisms. Food intake has an impact on and is also affected by the gut-brain signalling which controls hunger and appetite. This review describes selected recent research from Full4Health and how new mechanistic findings could be exploited to adapt and control our physiological responses to food, potentially providing an alternative solution to addressing the global problems related to positive energy balance.


Assuntos
Ingestão de Alimentos , Fome , Saciação , Apetite , Alimentos Formulados , Humanos , Obesidade
11.
Proc Nutr Soc ; 74(2): 149-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25598432

RESUMO

Nutrition across the lifespan encompasses both preventative and treatment options to maintain health and vitality. This review will focus on the challenge of overconsumption of energy relative to energy expenditure and the consequent development of overweight and obesity, since they are responsible for much of the burden of chronic disease in the developed world. Understanding the mechanisms of hunger and satiety and how particular foodstuffs and nutrients affect appetite and motivation to eat is important for evidence-based interventions to achieve weight control and design of community-wide dietary strategies that reach across the lifespan. Food reformulation for appetite control and weight management requires a knowledge of the mechanisms of hunger and satiety, how food interacts with peripheral and central regulatory systems, and how these interactions change across the lifecourse, allied to the technical capability to generate, evaluate and develop new ingredients and foods with enhanced biological potency based on these mechanisms. Two European Union-funded research projects, Full4Health and SATIN, are adopting these complementary approaches. These research projects straddle the sometimes conflicted ground between justifiable public health concerns on the one hand and the food and drink industry on the other. These multi-disciplinary projects pull together expertise in nutrition, neuroimaging, psychology and food technology that combines with food industry partners to maximise expected impact of the research. Better knowledge of mechanisms regulating hunger/satiety will lead to evidence base for preventive strategies for the European population, to reduction of chronic disease burden and to increased competitiveness of European food industry through the development of new food products.


Assuntos
Envelhecimento , Comportamento de Escolha , Medicina Baseada em Evidências , Preferências Alimentares , Política Nutricional , Cooperação do Paciente , Medicina de Precisão , Animais , Regulação do Apetite , Controle Comportamental/métodos , Terapia Combinada , Congressos como Assunto , Ingestão de Energia , Metabolismo Energético , União Europeia , Abastecimento de Alimentos , Humanos , Obesidade/dietoterapia , Obesidade/prevenção & controle , Obesidade/terapia , Sobrepeso/dietoterapia , Sobrepeso/prevenção & controle , Sobrepeso/terapia , Resposta de Saciedade
12.
Neurosci Biobehav Rev ; 47: 295-306, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25205078

RESUMO

"Food addiction" has become a focus of interest for researchers attempting to explain certain processes and/or behaviors that may contribute to the development of obesity. Although the scientific discussion on "food addiction" is in its nascent stage, it has potentially important implications for treatment and prevention strategies. As such, it is important to critically reflect on the appropriateness of the term "food addiction", which combines the concepts of "substance-based" and behavioral addiction. The currently available evidence for a substance-based food addiction is poor, partly because systematic clinical and translational studies are still at an early stage. We do however view both animal and existing human data as consistent with the existence of addictive eating behavior. Accordingly, we stress that similar to other behaviors eating can become an addiction in thus predisposed individuals under specific environmental circumstances. Here, we introduce current diagnostic and neurobiological concepts of substance-related and non-substance-related addictive disorders, and highlight the similarities and dissimilarities between addiction and overeating. We conclude that "food addiction" is a misnomer because of the ambiguous connotation of a substance-related phenomenon. We instead propose the term "eating addiction" to underscore the behavioral addiction to eating; future research should attempt to define the diagnostic criteria for an eating addiction, for which DSM-5 now offers an umbrella via the introduction on Non-Substance-Related Disorders within the category Substance-Related and Addictive Disorders.


Assuntos
Comportamento Aditivo/psicologia , Ingestão de Alimentos/psicologia , Comportamento Alimentar/psicologia , Transtornos da Alimentação e da Ingestão de Alimentos/psicologia , Alimentos , Recompensa , Comportamento Aditivo/complicações , Transtornos da Alimentação e da Ingestão de Alimentos/complicações , Humanos , Obesidade/etiologia , Obesidade/psicologia
13.
Thyroid ; 24(11): 1575-93, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25087834

RESUMO

BACKGROUND: The thyroid hormone triiodothyronine (T3) is known to affect energy balance. Recent evidence points to an action of T3 in the hypothalamus, a key area of the brain involved in energy homeostasis, but the components and mechanisms are far from understood. The aim of this study was to identify components in the hypothalamus that may be involved in the action of T3 on energy balance regulatory mechanisms. METHODS: Sprague Dawley rats were made hypothyroid by giving 0.025% methimazole (MMI) in their drinking water for 22 days. On day 21, half the MMI-treated rats received a saline injection, whereas the others were injected with T3. Food intake and body weight measurements were taken daily. Body composition was determined by magnetic resonance imaging, gene expression was analyzed by in situ hybridization, and T3-induced gene expression was determined by microarray analysis of MMI-treated compared to MMI-T3-injected hypothalamic RNA. RESULTS: Post mortem serum thyroid hormone levels showed that MMI treatment decreased circulating thyroid hormones and increased thyrotropin (TSH). MMI treatment decreased food intake and body weight. Body composition analysis revealed reduced lean and fat mass in thyroidectomized rats from day 14 of the experiment. MMI treatment caused a decrease in circulating triglyceride concentrations, an increase in nonesterified fatty acids, and decreased insulin levels. A glucose tolerance test showed impaired glucose clearance in the thyroidectomized animals. In the brain, in situ hybridization revealed marked changes in gene expression, including genes such as Mct8, a thyroid hormone transporter, and Agrp, a key component in energy balance regulation. Microarray analysis revealed 110 genes to be up- or downregulated with T3 treatment (± 1.3-fold change, p<0.05). Three genes chosen from the differentially expressed genes were verified by in situ hybridization to be activated by T3 in cells located at or close to the hypothalamic ventricular ependymal layer and differentially expressed in animal models of long- and short-term body weight regulation. CONCLUSION: This study identified genes regulated by T3 in the hypothalamus, a key area of the brain involved in homeostasis and neuroendocrine functions. These include genes hitherto not known to be regulated by thyroid status.


Assuntos
Glicemia/metabolismo , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Hipotireoidismo/genética , Tri-Iodotironina/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Metabolismo Energético/fisiologia , Homeostase/fisiologia , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/metabolismo , Masculino , Metimazol , Ratos , Ratos Sprague-Dawley
14.
Nutrients ; 6(3): 985-1002, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24599157

RESUMO

Food availability and associated sensory cues such as olfaction are known to trigger a range of hormonal and behavioural responses. When food availability is predictable these physiological and behavioural responses can become entrained to set times and occur in anticipation of food rather than being dependent on the food-related cues. Here we summarise the range of physiological and behavioural responses to food when the time of its availability is unpredictable, and consider the potential to manipulate feeding patterns for benefit in metabolic and mental health.


Assuntos
Ritmo Circadiano/fisiologia , Comportamento Alimentar/fisiologia , Peso Corporal , Ingestão de Energia , Metabolismo Energético , Humanos , Refeições , Olfato , Paladar
15.
Physiol Behav ; 128: 172-9, 2014 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-24534180

RESUMO

Sprague-Dawley rats over-consume calories over a 10 week period and develop diet-induced obesity (c. 100 g body weight differential vs controls) when fed a control pellet diet supplemented with chocolate Ensure liquid. Subsequent withdrawal of Ensure immediately reduces caloric intake by more than 50%, and results in weight loss, despite control pellet being available ad libitum. To assess the molecular underpinnings of this phenomenon, brains were processed for energy balance and food reward-related gene expression analysis at two time points, 24 h and 4 days after the withdrawal of Ensure, when energy intake was suppressed. Gene expression levels in hypothalamic arcuate nucleus and forebrain nucleus accumbens were compared with rats pair-fed to the same energy intake, i.e. imposed negative energy balance, and to controls fed control pellet ad libitum throughout. Cumulative energy intake was approximately 50% lower across the 4 day post-Ensure period, giving rise to a small reduction in body weight although body adiposity and blood leptin remained elevated (c. 100% and 50%, respectively vs controls) in rats that had previously been fed Ensure. In contrast, pair-feeding reduced blood insulin and leptin by 33% and 55%, respectively. Hypothalamic expression of neuropeptide Y and agouti-related peptide was down-regulated at 24 h in rats previously fed Ensure, indicative of the apparent counter-regulatory changes seen in diet-induced obesity, but was normalised between the 24 h and 4 day time points. By contrast, the effect of cumulative negative energy balance in the pair-fed groups increased with time, up-regulating expression of the orexigenic neuropeptides. There was also a reduction of suppressor of cytokine signalling-3 gene expression in pair-fed groups where leptin levels were low. There were no changes in opioid, dopamine receptor or cannabinoid receptor expression in the nucleus accumbens. Feedback from diet-induced obesity appears to drive voluntary hypophagia upon withdrawal of palatable diet, and to override signals from intake restriction that would otherwise set in train an anabolic drive.


Assuntos
Sacarose Alimentar , Ingestão de Alimentos/fisiologia , Alimentos Formulados , Expressão Gênica/fisiologia , Hipotálamo/metabolismo , Animais , Dieta , Metabolismo Energético/fisiologia , Hipotálamo/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos , Ratos Sprague-Dawley
16.
Int J Endocrinol ; 2013: 701967, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24027581

RESUMO

A substantial proportion of noncommunicable disease originates in habitual overconsumption of calories, which can lead to weight gain and obesity and attendant comorbidities. At the other end of the spectrum, the consequences of undernutrition in early life and at different stages of adult life can also have major impact on wellbeing and quality of life. To help address some of these issues, greater understanding is required of interactions with food and contemporary diets throughout the life course and at a number of different levels: physiological, metabolic, psychological, and emotional. Here we review the current literature on the effects of dietary manipulation on anxiety-like behaviour. This evidence, assembled from study of preclinical models of diet challenge from gestation to adult life, supports a role for diet in the important connections between psychology, physiology, and behaviour. Analogous processes in the human population in our current obesogenic environment are likely to contribute to individual and societal challenges in this area.

17.
PLoS One ; 8(4): e62003, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23637944

RESUMO

Exposure to short days (SD) induces profound changes in the physiology and behaviour of Siberian hamsters, including gonadal regression and up to 30% loss in body weight. In a continuous SD environment after approximately 20 weeks, Siberian hamsters spontaneously revert to a long day (LD) phenotype, a phenomenon referred to as the photorefractory response. Previously we have identified a number of genes that are regulated by short photoperiod in the neuropil and ventricular ependymal (VE) cells of the hypothalamus, although their importance and contribution to photoperiod induced physiology is unclear. In this refractory model we hypothesised that the return to LD physiology involves reversal of SD expression levels of key hypothalamic genes to their LD values and thereby implicate genes required for LD physiology. Male Siberian hamsters were kept in either LD or SD for up to 39 weeks during which time SD hamster body weight decreased before increasing, after more than 20 weeks, back to LD values. Brain tissue was collected between 14 and 39 weeks for in situ hybridization to determine hypothalamic gene expression. In VE cells lining the third ventricle, expression of nestin, vimentin, Crbp1 and Gpr50 were down-regulated at 18 weeks in SD photoperiod, but expression was not restored to the LD level in photorefractory hamsters. Dio2, Mct8 and Tsh-r expression were altered by SD photoperiod and were fully restored, or even exceeded values found in LD hamsters in the refractory state. In hypothalamic nuclei, expression of Srif and Mc3r mRNAs was altered at 18 weeks in SD, but were similar to LD expression values in photorefractory hamsters. We conclude that in refractory hamsters not all VE cell functions are required to establish LD physiology. However, thyroid hormone signalling from ependymal cells and reversal of neuronal gene expression appear to be essential for the SD refractory response.


Assuntos
Epêndima/metabolismo , Hormônios Hipotalâmicos/biossíntese , Hipotálamo/metabolismo , Iodeto Peroxidase/metabolismo , Fotoperíodo , Estações do Ano , Adaptação Fisiológica , Animais , Peso Corporal/fisiologia , Cricetinae , Iodeto Peroxidase/biossíntese , Masculino , Transportadores de Ácidos Monocarboxílicos/biossíntese , Nestina/biossíntese , Phodopus , Receptor Tipo 3 de Melanocortina/biossíntese , Receptores Acoplados a Proteínas G/biossíntese , Proteínas Celulares de Ligação ao Retinol/biossíntese , Somatostatina/biossíntese , Transcriptoma , Vimentina/biossíntese , Iodotironina Desiodinase Tipo II
19.
Brain Res ; 1477: 10-8, 2012 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-22922128

RESUMO

Maternal diet ingested during gestation can profoundly alter production and action of hypothalamic neuropeptides involved in feeding and body weight regulation. In this study, we set out to simulate, in a rat model, modifications to feeding habit often observed in pregnant women. Gestating dams were fed a restricted normal diet with the opportunity to complete their energy requirements with either a high-fat (HF) or a high-carbohydrate (HC) diet. Growth and hypothalamic feeding peptides were measured in the offspring at 3 (weaning) and 20 weeks of age. At weaning, body weight was lower in HC pups than in HF pups or control (Ca) pups born to dams fed control diet ad libitum. Expression of neuropeptide Y (NPY) and AgRP mRNA in the arcuate nucleus were increased in HC pups vs Ca and HF pups. By 20 weeks of age, body weight differentials had disappeared, and there was no differences in NPY and AgRP gene expression, although POMC expression was lower in HC rats than in HF rats. NPY and orexin peptide concentrations in the paraventricular nucleus at this age were higher in HC rats than in Ca and HF rats. In HC rats, there was also a greater positive gradient of peptide concentration between the zone of release and the zone of synthesis for NPY and orexin. The early up-regulation of orexigenic peptides in HC rats may be a compensatory adjustment to low body weight. This persisting overactive orexigenic drive might have deleterious metabolic effects in an obesogenic environment at adulthood.


Assuntos
Carboidratos da Dieta/efeitos adversos , Neuropeptídeos/metabolismo , Efeitos Tardios da Exposição Pré-Natal/etiologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Regulação para Cima/fisiologia , Fatores Etários , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Animais Recém-Nascidos , Peso Corporal/fisiologia , Feminino , Hipotálamo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Neuropeptídeos/genética , Orexinas , Gravidez , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Long-Evans
20.
Front Physiol ; 3: 224, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22737135

RESUMO

Prenatal nutritional conditions can predispose to development of obesity and metabolic syndrome in adulthood. Gestation with its important modifications in hormonal status is a period of changes in normal feeding habits with pulses of consumption or avoidance of certain categories of food. We tried to mimic in an animal model some changes in food consumption patterns observed in pregnant women. For this purpose, Long-Evans female rats were fed during the dark period, their usual pre-gestational food quantity, and were allowed to complete their daily intake with either a restricted control (Cr), high-fat (HF), or high-carbohydrate (HC) diet available ad libitum during the light period. Dams fed a control diet ad libitum (Ca) served as controls. Body weight and composition, food intake, and metabolic hormones (insulin, leptin) were recorded in male offspring until 20 weeks after birth. Cr and HC females ate less than Ca females (-16%; p < 0.001) and their offspring presented a weight deficit from birth until 6 (HC group) and 10 (Cr group) weeks of age (p < 0.05 or less). Plasma leptin corresponded to low body weight in Cr offspring, but was increased in HC offspring that in addition, had increased plasma insulin, blood glucose, and subcutaneous adipose tissue mass. HF dams ate more than Ca dams (+13%; p < 0.001), but plasma leptin and insulin were similar in their offspring. Hypothalamic Ob-Rb expression was increased in Cr, HC, and HF offspring (+33-100% vs Ca; p < 0.05 or less). HC supplement ingestion during gestation therefore leads to insulin and leptin resistance in adult offspring independently of lower birth weight. These hormonal changes characterize obesity-prone animals. We therefore suggest that attention should be paid to the carbohydrate snacking and overall carbohydrate content in the diet during the last weeks (or months) preceding delivery to limit development of later metabolic disorders in offspring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...