Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(10): e0203597, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30289930

RESUMO

Research in photobiology is currently limited by a lack of devices capable of delivering precise and tunable irradiation to cells in a high-throughput format. This limits researchers to using expensive commercially available or custom-built light sources which make it difficult to replicate, standardize, optimize, and scale experiments. Here we present an open-source Microplate Photoirradiation System (MPS) developed to enable high-throughput light experiments in standard 96 and 24-well microplates for a variety of applications in photobiology research. This open-source system features 96 independently controlled LEDs (4 LEDs per well in 24-well), Wi-Fi connected control and programmable graphical user interface (GUI) for control and programming, automated calibration GUI, and modular control and LED boards for maximum flexibility. A web-based GUI generates light program files containing irradiation parameters for groups of LEDs. These parameters are then uploaded wirelessly, stored and used on the MPS to run photoirradiation experiments inside any incubator. A rapid and semi-quantitative porphyrin metabolism assay was also developed to validate the system in wild-type fibroblasts. Protoporphyrin IX (PpIX) fluorescence accumulation was induced by incubation with 5-aminolevulinic acid (ALA), a photosensitization method leveraged clinically to destroy malignant cell types in a process termed photodynamic therapy (PDT), and cells were irradiated with 405nm light with varying irradiance, duration and pulsation parameters. Immediately after light treatment with the MPS, subsequent photobleaching was measured in live, adherent cells in both 96-well and a 24-well microplates using a microplate reader. Results demonstrate the utility and reliability of the Microplate Photoirradiation System to irradiate cells with precise irradiance and timing parameters in order to measure PpIx photobleaching kinetics in live adherent cells and perform comparable experiments with both 24 and 96 well microplate formats. The high-throughput capability of the MPS enabled measurement of enough irradiance conditions in a single microplate to fit PpIX fluorescence to a bioexponential decay model of photobleaching, as well as reveal a dependency of photobleaching on duty-cycle-but not frequency-in a pulsed irradiance regimen.


Assuntos
Fotobiologia/métodos , Fotoquimioterapia/métodos , Transtornos de Fotossensibilidade , Protoporfirinas/química , Ácido Aminolevulínico/química , Ácido Aminolevulínico/efeitos da radiação , Gráficos por Computador , Humanos , Luz , Fotodegradação , Protoporfirinas/efeitos da radiação , Radiação , Tecnologia sem Fio
2.
Proc AAAI Conf Artif Intell ; 2016: 1037-1043, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31001456

RESUMO

One of the key uses of causes is to explain why things happen. Explanations of specific events, like an individual's heart attack on Monday afternoon or a particular car accident, help assign responsibility and inform our future decisions. Computational methods for causal inference make use of the vast amounts of data collected by individuals to better understand their behavior and improve their health. However, most methods for explanation of specific events have provided theoretical approaches with limited applicability. In contrast we make two main contributions: an algorithm for explanation that calculates the strength of token causes, and an evaluation based on simulated data that enables objective comparison against prior methods and ground truth. We show that the approach finds the correct relationships in classic test cases (causal chains, common cause, and backup causation) and in a realistic scenario (explaining hyperglycemic episodes in a simulation of type 1 diabetes).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...