Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 11: 637604, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842387

RESUMO

The high prevalence of sickle cell disease in some human populations likely results from the protection afforded against severe Plasmodium falciparum malaria and death by heterozygous carriage of HbS. P. falciparum remodels the erythrocyte membrane and skeleton, displaying parasite proteins at the erythrocyte surface that interact with key human proteins in the Ankyrin R and 4.1R complexes. Oxidative stress generated by HbS, as well as by parasite invasion, disrupts the kinase/phosphatase balance, potentially interfering with the molecular interactions between human and parasite proteins. HbS is known to be associated with abnormal membrane display of parasite antigens. Studying the proteome and the phosphoproteome of red cell membrane extracts from P. falciparum infected and non-infected erythrocytes, we show here that HbS heterozygous carriage, combined with infection, modulates the phosphorylation of erythrocyte membrane transporters and skeletal proteins as well as of parasite proteins. Our results highlight modifications of Ser-/Thr- and/or Tyr- phosphorylation in key human proteins, such as ankyrin, ß-adducin, ß-spectrin and Band 3, and key parasite proteins, such as RESA or MESA. Altered phosphorylation patterns could disturb the interactions within membrane protein complexes, affect nutrient uptake and the infected erythrocyte cytoadherence phenomenon, thus lessening the severity of malaria symptoms.


Assuntos
Malária Falciparum , Traço Falciforme , Eritrócitos , Humanos , Plasmodium falciparum , Proteoma , Proteínas de Protozoários
2.
Molecules ; 25(21)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158263

RESUMO

Guttiferone A (GA) 1, a polycyclic polyprenylated acylphloroglucinol (PPAP) isolated from the plant Symphonia globulifera (Clusiaceae), constitutes a novel hit in antimalarial drug discovery. PPAPs do not possess identified biochemical targets in malarial parasites up to now. Towards this aim, we designed and evaluated a natural product-derived photoactivatable probe AZC-GA 5, embedding a photoalkylative fluorogenic motif of the 7-azidocoumarin (AZC) type, devoted to studying the affinity proteins interacting with GA in Plasmodium falciparum. Probe 5 manifested a number of positive functional and biological features, such as (i) inhibitory activity in vitro against P. falciparum blood-stages that was superimposable to that of GA 1, dose-response photoalkylative fluorogenic properties (ii) in model conditions using bovine serum albumin (BSA) as an affinity protein surrogate, (iii) in live P. falciparum-infected erythrocytes, and (iv) in fresh P. falciparum cell lysate. Fluorogenic signals by photoactivated AZC-GA 5 in biological settings were markedly abolished in the presence of excess GA 1 as a competitor, indicating significant pharmacological specificity of the designed molecular probe relative to the native PPAP. These results open the way to identify the detected plasmodial proteins as putative drug targets for the natural product 1 by means of proteomic analysis.


Assuntos
Benzofenonas , Corantes Fluorescentes , Imagem Óptica , Plasmodium falciparum/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Benzofenonas/química , Benzofenonas/farmacologia , Eritrócitos/parasitologia , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Humanos , Plasmodium falciparum/citologia
3.
Open Forum Infect Dis ; 6(4): ofz156, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31041352

RESUMO

BACKGROUND: Sickle cell trait (HbAS) confers partial protection against malaria by reducing the adhesion of Plasmodium falciparum-infected erythrocytes to host receptors, but little is known about its potential protection against placental malaria. METHODS: Using flow cytometry, we assessed the recognition of HbAA and HbAS VAR2CSA-expressing infected erythrocytes, by plasma from 159 Beninese pregnant women with either HbAA (normal) or HbAS. Using multivariate linear models adjusted for gravidity, parasite infection at delivery, glucose-6-phosphate dehydrogenase deficiency, and α-thalassemia carriage, we observed significantly reduced cell surface antibody binding of HbAS-infected erythrocytes by plasma from HbAS compared with HbAA women (P < 10-3). RESULTS: The difference in cell surface antibody binding was only observed when infected erythrocytes and plasma were associated according to the same hemoglobin genotype. Similar levels of VAR2CSA-specific antibody were measured by enzyme-linked immunosorbent assay in the 2 groups, suggesting that the altered interaction between VAR2CSA and HbAS women's antibodies could reflect abnormal display of VAR2CSA on HbAS erythrocytes. CONCLUSIONS: Our data stress the need for assessments of erythrocyte disorders such as the sickle cell trait in a population group when studying immunological responses to P falciparum.

4.
Malar J ; 15: 248, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27129434

RESUMO

BACKGROUND: The asexual intra-erythrocytic multiplication of the malaria parasite Plasmodium falciparum is regulated by various molecular mechanisms. In eukaryotic cells, protein kinases are known to play key roles in cell cycle regulation and signaling pathways. The activity of cAMP-dependent protein kinase (PKA) depends on A-kinase anchoring proteins (AKAPs) through protein interactions. While several components of the cAMP dependent pathway-including the PKA catalytic and regulatory subunits-have been characterized in P. falciparum, whether AKAPs are involved in this pathway remains unclear. Here, PfAKAL, an open reading frame of a potential AKAP-like protein in the P. falciparum genome was identified, and its protein partners and putative cellular functions characterized. METHODS: The expression of PfAKAL throughout the erythrocytic cycle of the 3D7 strain was assessed by RT-qPCR and the presence of the corresponding protein by immunofluorescence assays. In order to study physical interactions between PfAKAL and other proteins, pull down experiments were performed using a recombinant PfAKAL protein and parasite protein extracts, or with recombinant proteins. These interactions were also tested by combining biochemical and proteomic approaches. As phosphorylation could be involved in the regulation of protein complexes, both PfAKAL and Pf14-3-3I phosphorylation was studied using a radiolabel kinase activity assay. Finally, to identify a potential function of the protein, PfAKAL sequence was aligned and structurally modeled, revealing a conserved nucleotide-binding pocket; confirmed by qualitative nucleotide binding experiments. RESULTS: PfAKAL is the first AKAP-like protein in P. falciparum to be identified, and shares 23 % sequence identity with the central domain of human AKAP18δ. PfAKAL is expressed in mature asexual stages, merozoites and gametocytes. In spite of homology to AKAP18, biochemical and immunochemical analyses demonstrated that PfAKAL does not interact directly with the P. falciparum PKA regulatory subunit (PfPKA-R), but instead binds and colocalizes with Pf14-3-3I, which in turn interacts with PfPKA-R. In vivo, these different interactions could be regulated by phosphorylation, as PfPKA-R and Pf14-3-3I, but not PfAKAL, are phosphorylated in vitro by PKA. Interestingly, PfAKAL binds nucleotides such as AMP and cAMP, suggesting that this protein may be involved in the AMP-activated protein kinase (AMPK) pathway, or associated with phosphodiesterase activities. CONCLUSION: PfAKAL is an atypical AKAP that shares common features with human AKAP18, such as nucleotides binding. The interaction of PfAKAL with PfPKA-R could be indirectly mediated through a join interaction with Pf14-3-3I. Therefore, PfPKA localization could not depend on PfAKAL, but rather involves other partners.


Assuntos
Proteínas de Ancoragem à Quinase A/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Plasmodium falciparum/enzimologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Ancoragem à Quinase A/química , Proteínas de Ancoragem à Quinase A/metabolismo , Sequência de Aminoácidos , Proteínas Quinases Dependentes de AMP Cíclico/química , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Transdução de Sinais
5.
Blood ; 127(24): e42-53, 2016 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-27136945

RESUMO

Deformability of Plasmodium falciparum gametocyte-infected erythrocytes (GIEs) allows them to persist for several days in blood circulation and to ensure transmission to mosquitoes. Here, we investigate the mechanism by which the parasite proteins STEVOR (SubTElomeric Variable Open Reading frame) exert changes on GIE deformability. Using the microsphiltration method, immunoprecipitation, and mass spectrometry, we produce evidence that GIE stiffness is dependent on the cytoplasmic domain of STEVOR that interacts with ankyrin complex at the erythrocyte skeleton. Moreover, we show that GIE deformability is regulated by protein kinase A (PKA)-mediated phosphorylation of the STEVOR C-terminal domain at a specific serine residue (S324). Finally, we show that the increase of GIE stiffness induced by sildenafil (Viagra) is dependent on STEVOR phosphorylation status and on another independent mechanism. These data provide new insights into mechanisms by which phosphodiesterase inhibitors may block malaria parasite transmission.


Assuntos
Antígenos de Protozoários/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Deformação Eritrocítica , Malária Falciparum/parasitologia , Malária Falciparum/transmissão , Plasmodium falciparum , Animais , Células Cultivadas , Interações Hospedeiro-Parasita , Humanos , Malária Falciparum/sangue , Fosforilação , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/metabolismo
6.
Microbes Infect ; 14(10): 838-50, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22626931

RESUMO

One of the prototype mammalian kinases is PKA and various roles have been defined for PKA in malaria pathogenesis. The recently described phospho-proteomes of Plasmodium falciparum introduced a great volume of phospho-peptide data for both basic research and identification of new anti-malaria therapeutic targets. We discuss the importance of phosphorylations detected in vivo at different sites in the parasite R and C subunits of PKA and highlight the inhibitor sites in the parasite R subunit. The N-terminus of the parasite R subunit is predicted to be very flexible and we propose that phosphorylation at multiple sites in this region likely represent docking sites for interactions with other proteins, such as 14-3-3. The most significant observation when the P. falciparum C subunit is compared to mammalian C isoforms is lack of phosphorylation at a key site tail implying that parasite kinase activity is not regulated so tightly as mammalian PKA. Phosphorylation at sites in the activation loop could be mediating a number of processes from regulating parasite kinase activity, to mediating docking of other proteins. The important differences between Plasmodium and mammalian PKA isoforms that indicate the parasite kinase is a valid anti-malaria therapeutic target.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Plasmodium falciparum/enzimologia , Processamento de Proteína Pós-Traducional , Proteínas de Protozoários/metabolismo , Antimaláricos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Humanos , Fosforilação , Plasmodium falciparum/efeitos dos fármacos , Proteínas de Protozoários/antagonistas & inibidores
7.
J Immunol ; 184(3): 1436-44, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20042571

RESUMO

Mycolactone is a diffusible lipid toxin produced by Mycobacterium ulcerans, the causative agent of a necrotizing skin disease referred to as Buruli ulcer. Intriguingly, patients with progressive lesions display a systemic suppression of Th1 responses that resolves on surgical excision of infected tissues. In this study, we examined the effects of mycolactone on the functional biology of T cells and identified two mechanisms by which mycolactone suppresses cell responsiveness to antigenic stimulation. At noncytotoxic concentrations, mycolactone blocked the activation-induced production of cytokines by a posttranscriptional, mammalian target of rapamycin, and cellular stress-independent mechanism. In addition, mycolactone triggered the lipid-raft association and activation of the Src-family kinase, Lck. Mycolactone-mediated hyperactivation of Lck resulted in the depletion of intracellular calcium stores and downregulation of the TCR, leading to impaired T cell responsiveness to stimulation. These biochemical alterations were not observed when T cells were exposed to other bacterial lipids, or to structurally related immunosuppressors. Mycolactone thus constitutes a novel type of T cell immunosuppressive agent, the potent activity of which may explain the defective cellular responses in Buruli ulcer patients.


Assuntos
Toxinas Bacterianas/farmacologia , Imunossupressores/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Animais , Toxinas Bacterianas/toxicidade , Úlcera de Buruli/enzimologia , Úlcera de Buruli/imunologia , Células Cultivadas , Humanos , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/genética , Imunossupressores/toxicidade , Líquido Intracelular/efeitos dos fármacos , Líquido Intracelular/enzimologia , Líquido Intracelular/imunologia , Células Jurkat , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/fisiologia , Macrolídeos , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium ulcerans/imunologia , Processamento de Proteína Pós-Traducional/imunologia , Linfócitos T/enzimologia , Fatores de Tempo
8.
Trends Parasitol ; 25(3): 139-44, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19200784

RESUMO

By replicating within red blood cells, malaria parasites are largely hidden from immune recognition; however, in the cells, nutrients are limiting and hazardous metabolic end products can rapidly accumulate. Therefore, to survive within erythrocytes, parasites alter the permeability of the host plasma membrane, either by upregulating existing transporters or by creating new permeation pathways. Recent electrophysiological studies of Plasmodium-infected erythrocytes have demonstrated that membrane permeability is mediated by transmembrane transport through ion channels in the infected erythrocyte. This article discusses the evidence and controversies concerning the nature of these channels and surveys the potential role of phosphorylation in activating anion channels that could be important in developing novel strategies for future malarial chemotherapies.


Assuntos
Ânions , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eritrócitos/parasitologia , Canais Iônicos/metabolismo , Plasmodium falciparum/fisiologia , Animais , Permeabilidade da Membrana Celular , Eritrócitos/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/enzimologia , Plasmodium falciparum/patogenicidade
9.
PLoS Pathog ; 4(2): e19, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18248092

RESUMO

Malaria symptoms occur during Plasmodium falciparum development into red blood cells. During this process, the parasites make substantial modifications to the host cell in order to facilitate nutrient uptake and aid in parasite metabolism. One significant alteration that is required for parasite development is the establishment of an anion channel, as part of the establishment of New Permeation Pathways (NPPs) in the red blood cell plasma membrane, and we have shown previously that one channel can be activated in uninfected cells by exogenous protein kinase A. Here, we present evidence that in P. falciparum-infected red blood cells, a cAMP pathway modulates anion conductance of the erythrocyte membrane. In patch-clamp experiments on infected erythrocytes, addition of recombinant PfPKA-R to the pipette in vitro, or overexpression of PfPKA-R in transgenic parasites lead to down-regulation of anion conductance. Moreover, this overexpressing PfPKA-R strain has a growth defect that can be restored by increasing the levels of intracellular cAMP. Our data demonstrate that the anion channel is indeed regulated by a cAMP-dependent pathway in P. falciparum-infected red blood cells. The discovery of a parasite regulatory pathway responsible for modulating anion channel activity in the membranes of P. falciparum-infected red blood cells represents an important insight into how parasites modify host cell permeation pathways. These findings may also provide an avenue for the development of new intervention strategies targeting this important anion channel and its regulation.


Assuntos
Proteína 1 de Troca de Ânion do Eritrócito/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Eritrócitos/parasitologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Canais de Ânion Dependentes de Voltagem/fisiologia , Animais , Proteína 1 de Troca de Ânion do Eritrócito/efeitos dos fármacos , Ânions , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/genética , Eletrofisiologia , Eritrócitos/efeitos dos fármacos , Genes de Protozoários , Interações Hospedeiro-Parasita , Ativação do Canal Iônico , Canais Iônicos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Técnicas de Patch-Clamp , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/genética , Proteínas Recombinantes/farmacologia , Canais de Ânion Dependentes de Voltagem/efeitos dos fármacos
10.
Structure ; 16(2): 228-38, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18275814

RESUMO

Malaria is a major threat to world health. The identification of parasite targets for drug development is a priority and parasitic protein kinases suggest themselves as suitable targets as many display profound structural and functional divergences from their host counterparts. In this paper, we describe the structure of the orphan protein kinase, Plasmodium falciparum protein kinase 7 (PFPK7). Several Plasmodium protein kinases contain extensive insertions, and the structure of PFPK7 reveals how these may be accommodated as excursions from the canonical eukaryotic protein kinase fold. The constitutively active conformation of PFPK7 is stabilized by a structural motif in which the role of the conserved phosphorylated residue that assists in structuring the activation loop of many protein kinases is played by an arginine residue. We identify two series of PFPK7 ATP-competitive inhibitors and suggest further developments for the design of selective and potent PFPK7 lead compounds as potential antimalarials.


Assuntos
Antimaláricos/química , Plasmodium falciparum/enzimologia , Proteínas Quinases/química , Proteínas de Protozoários/química , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Desenho de Fármacos , Ativação Enzimática , Inibidores Enzimáticos/química , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Fosforilação , Proteínas Quinases/metabolismo , Proteínas de Protozoários/metabolismo
11.
Structure ; 11(11): 1329-37, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14604523

RESUMO

Plasmodium falciparum cell cycle regulators are promising targets for antimalarial drug design. We have determined the structure of PfPK5, the first structure of a P. falciparum protein kinase and the first of a cyclin-dependent kinase (CDK) not derived from humans. The fold and the mechanism of inactivation of monomeric CDKs are highly conserved across evolution. ATP-competitive CDK inhibitors have been developed as potential leads for cancer therapeutics. These studies have identified regions of the CDK active site that can be exploited to achieve significant gains in inhibitor potency and selectivity. We have cocrystallized PfPK5 with three inhibitors that target such regions. The sequence differences between PfPK5 and human CDKs within these inhibitor binding sites suggest that selective inhibition is an attainable goal. Such compounds will be useful tools for P. falciparum cell cycle studies, and will provide lead compounds for antimalarial drug development.


Assuntos
Ciclinas/química , Regulação Enzimológica da Expressão Gênica , Plasmodium falciparum/química , Proteínas de Protozoários/química , Animais , Sítios de Ligação , Ligação Competitiva , Bovinos , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Humanos , Indóis/química , Concentração Inibidora 50 , Modelos Moleculares , Fosforilação , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Ácidos Sulfônicos/química , Temperatura
12.
J Biol Chem ; 278(41): 39839-50, 2003 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-12869562

RESUMO

The molecular mechanisms regulating cell proliferation and development during the life cycle of malaria parasites remain to be elucidated. The peculiarities of the cell cycle organization during Plasmodium falciparum schizogony suggest that the modalities of cell cycle control in this organism may differ from those in other eukaryotes. Indeed, existing data concerning Plasmodium cell cycle regulators such as cyclin-dependent kinases reveal structural and functional properties that are divergent from those of their homologues in other systems. The work presented here lies in the context of the exploitation of the recently available P. falciparum genome sequence toward the characterization of putative cell cycle regulators. We describe the in silico identification of three open reading frames encoding proteins with maximal homology to various members of the cyclin family and demonstrate that the corresponding polypeptides are expressed in the erythrocytic stages of the infection. We present evidence that these proteins possess cyclin activity by demonstrating either their association with histone H1 kinase activity in parasite extracts or their ability to activate PfPK5, a P. falciparum cyclin-dependent kinase homologue, in vitro. Furthermore, we show that RINGO, a protein with no sequence homology to cyclins but that is nevertheless a strong activator of mammalian CDK1/2, is also a strong activator of PfPK5 in vitro. This raises the possibility that "cryptic" cell cycle regulators may be found among the 50% of the open reading frames in the P. falciparum genome that display no homology to any known proteins.


Assuntos
Ciclinas/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Ciclinas/genética , Ciclinas/isolamento & purificação , DNA de Protozoário/genética , Eritrócitos/parasitologia , Regulação da Expressão Gênica no Desenvolvimento , Genes de Protozoários , Humanos , Técnicas In Vitro , Malária Falciparum/parasitologia , Dados de Sequência Molecular , Fases de Leitura Aberta , Plasmodium falciparum/citologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas Quinases/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/isolamento & purificação , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...