Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(4): 5273-5289, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823812

RESUMO

Broadband integrated thin-film lithium niobate (TFLN) electro-optic modulators (EOM) are desirable for optical communications and signal processing in both the O-band (1310 nm) and C-band (1550 nm). To address these needs, we design and demonstrate Mach-Zehnder (MZ) EOM devices in a hybrid platform based on TFLN bonded to foundry-fabricated silicon photonic waveguides. Using a single silicon lithography step and a single bonding step, we realize MZ EOM devices which cover both wavelength ranges on the same chip. The EOM devices achieve 100 GHz EO bandwidth (referenced to 1 GHz) and about 2-3 V.cm figure-of-merit (V π L) with low on-chip optical loss in both the O-band and C-band.

2.
Sci Rep ; 12(1): 18611, 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329093

RESUMO

High bandwidth, low voltage electro-optic modulators with high optical power handling capability are important for improving the performance of analog optical communications and RF photonic links. Here we designed and fabricated a thin-film lithium niobate (LN) Mach-Zehnder modulator (MZM) which can handle high optical power of 110 mW, while having 3-dB bandwidth greater than 110 GHz at 1550 nm. The design does not require etching of thin-film LN, and uses hybrid optical modes formed by bonding LN to planarized silicon photonic waveguide circuits. A high optical power handling capability in the MZM was achieved by carefully tapering the underlying Si waveguide to reduce the impact of optically-generated carriers, while retaining a high modulation efficiency. The MZM has a [Formula: see text] product of 3.1 V.cm and an on-chip optical insertion loss of 1.8 dB.

3.
Opt Express ; 28(19): 27495-27505, 2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32988042

RESUMO

We present a compact, highly sensitive and scalable on-chip photonic vibration measurement scheme for vibration sensing. The scheme uses a silicon photonic diffraction-grating based sensor integrated underneath a silicon cantilever. We demonstrate a static and dynamic measurement sensitivity (ΔT/Δgap) of 0.6 % change in intensity per nm displacement. The electrostatically driven dynamic response measurement of the grating based sensor shows an excellent agreement with commercial Laser Doppler Vibrometer (LDV) measurement. We demonstrate the thermo-mechanical noise measurement on the cantilever in ambience, which is verified using LDV. A minimum displacement of 1.9 pm is measured with a displacement sensitivity of 10 µW/nm for a measurement bandwidth of 16 Hz. The demonstrated sensitivity is 2 orders of magnitude better than that obtained from measurements of static displacement. We also present a detailed 2D-FDTD simulation and optimization of the grating-based sensor to achieve maximum displacement sensitivity.

4.
Opt Lett ; 43(21): 5194-5197, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30382964

RESUMO

We demonstrate on-waveguide thermo-optic tuners based on solution-processed metallic carbon nanotubes (CNTs) on silicon-on-insulator (SOI) and silicon nitride (SiN) microring resonators operating around 1550 nm. On SOI microring resonators using planarized wire waveguides, a thermo-optic power efficiency of 29 mW/FSR and a thermal transient of 1.3 µs are achieved. The heater is shown to be more power-efficient than conventional metal heaters and has lower thermal transient than both metal heaters and graphene-based heaters. On SiN microring resonators using rib waveguides, improvement in power efficiency with an increase in coverage of CNTs is demonstrated, indicating localized heating using the CNTs; this is favorable for low thermal cross-talk. An optimal power efficiency of 142 mW/FSR and a thermal transient of 5.8 µs are achieved.

5.
Opt Express ; 26(1): 438-444, 2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29328320

RESUMO

We present a novel photonic wire-to-slot waveguide coupler in SOI. The phase matching between a wire and slot mode is achieved using a mode transformer. The architecture consists of a balanced 50/50 power splitter and a tunable phase matched taper combiner forming a slot waveguide. We show a theoretical wire-to-slot coupling efficiency of 99 % is achievable and experimentally, we demonstrate a coupling efficiency of 99 % in the 1550 nm band. Based on the coupling scheme, we also show excitation of a slot mode in a slotted ring resonator and verified the excitation through the thermo-optic response of the rings. We show a nearly athermal behaviour of a PMMA filled slot ring with a thermo-optic response of 12.8 pm/°C compare to 43.5 pm/°C for an air clad slot waveguide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...