Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22278993

RESUMO

South Africa was among the first countries to detect the SARS-CoV-2 Omicron variant. Propelled by increased transmissibility and immune escape properties, Omicron displaced other globally circulating variants within 3 months of its emergence. Due to limited testing, Omicrons attenuated clinical severity, and an increased risk of reinfection, the size of the Omicron BA.1 and BA.2 subvariants (BA.1/2) wave remains poorly understood in South Africa and in many other countries. Using South African data from urban and rural cohorts closely monitored since the beginning of the pandemic, we analyzed sequential serum samples collected before, during, and after the Omicron BA.1/2 wave to infer infection rates and monitor changes in the immune histories of participants over time. Omicron BA.1/2 infection attack rates reached 65% (95% CI, 60% - 69%) in the rural cohort and 58% (95% CI, 61% - 74%) in the urban cohort, with repeat infections and vaccine breakthroughs accounting for >60% of all infections at both sites. Combined with previously collected data on pre-Omicron variant infections within the same cohorts, we identified 14 distinct categories of SARS-CoV-2 antigen exposure histories in the aftermath of the Omicron BA.1/2 wave, indicating a particularly fragmented immunologic landscape. Few individuals (<6%) remained naive to SARS-CoV-2 and no exposure history category represented over 25% of the population at either cohort site. Further, cohort participants were more than twice as likely to get infected during the Omicron BA.1/2 wave, compared to the Delta wave. Prior infection with the ancestral strain (with D614G mutation), Beta, and Delta variants provided 13% (95% CI, -21% - 37%), 34% (95% CI, 17% - 48%), and 51% (95% CI, 39% - 60%) protection against Omicron BA.1/2 infection, respectively. Hybrid immunity (prior infection and vaccination) and repeated prior infections (without vaccination) reduced the risks of Omicron BA.1/2 infection by 60% (95% CI, 42% - 72%) and 85% (95% CI, 76% - 92%) respectively. Reinfections and vaccine breakthroughs had 41% (95% CI, 26% - 53%) lower risk of onward transmission than primary infections. Our study sheds light on a rapidly shifting landscape of population immunity, along with the changing characteristics of SARS-CoV-2, and how these factors interact to shape the success of emerging variants. Our findings are especially relevant to populations similar to South Africa with low SARS-CoV-2 vaccine coverage and a dominant contribution of immunity from prior infection. Looking forward, the study provides context for anticipating the long-term circulation of SARS-CoV-2 in populations no longer naive to the virus.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22277839

RESUMO

BackgroundData on risk factors for COVID-19-associated hospitalisation and mortality in high HIV prevalence settings are limited. MethodsUsing existing syndromic surveillance programs for influenza-like-illness and severe respiratory illness at sentinel sites in South Africa, we identified factors associated with COVID-19 hospitalisation and mortality. ResultsFrom April 2020 through March 2022, SARS-CoV-2 was detected in 24.0% (660/2746) of outpatient and 32.5% (2282/7025) of inpatient cases. Factors associated with COVID-19-associated hospitalisation included: older age (25-44 [adjusted odds ratio (aOR) 1.8, 95% confidence interval (CI) 1.1-2.9], 45-64 [aOR 6.8, 95%CI 4.2-11.0] and [≥]65 years [aOR 26.6, 95%CI 14.4-49.1] vs 15-24 years); black race (aOR 3.3, 95%CI 2.2-5.0); obesity (aOR 2.3, 95%CI 1.4-3.9); asthma (aOR 3.5, 95%CI 1.4-8.9); diabetes mellitus (aOR 5.3, 95%CI 3.1-9.3); HIV with CD4 [≥]200/mm3 (aOR 1.5, 95%CI 1.1-2.2) and CD4<200/mm3 (aOR 10.5, 95%CI 5.1-21.6) or tuberculosis (aOR 12.8, 95%CI 2.8-58.5). Infection with Beta (aOR 0.5, 95%CI 0.3-0.7) vs Delta variant and being fully vaccinated (aOR 0.1, 95%CI 0.1-0.3) were less associated with COVID-19 hospitalisation. In-hospital mortality was increased in older age (45-64 years [aOR 2.2, 95%CI 1.6-3.2] and [≥]65 years [aOR 4.0, 95%CI 2.8-5.8] vs 25-44 years) and male sex (aOR1.3, 95%CI 1.0-1.6) and was lower in Omicron -infected (aOR 0.3, 95%CI 0.2-0.6) vs Delta-infected individuals. ConclusionActive syndromic surveillance encompassing clinical, laboratory and genomic data identified setting-specific risk factors associated with COVID-19 severity that will inform prioritization of COVID-19 vaccine distribution. Elderly, people with tuberculosis or people living with HIV, especially severely immunosuppressed should be prioritised for vaccination. Summary of articles viewpointCompared to the Delta variant, the Omicron variant was associated with reduced risk of mortality and Beta associated with decreased risk of hospitalisation. Active syndromic surveillance combining clinical, laboratory and genomic data can be used to describe the epidemic timing, epidemiological characteristics of cases, early detection of variants of concern and how these impact disease severity and outcomes; and presents a viable surveillance approach in settings where national surveillance is not possible.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22276228

RESUMO

Objectives: To compare the effectiveness of a primary COVID-19 vaccine series plus a booster dose with a primary series alone for the prevention of Omicron variant COVID-19 hospitalization. Design: Multicenter observational case-control study using the test-negative design to evaluate vaccine effectiveness (VE). Setting: Twenty-one hospitals in the United States (US). Participants: 3,181 adults hospitalized with an acute respiratory illness between December 26, 2021 and April 30, 2022, a period of SARS-CoV-2 Omicron variant (BA.1, BA.2) predominance. Participants included 1,572 (49%) case-patients with laboratory confirmed COVID-19 and 1,609 (51%) control patients who tested negative for SARS-CoV-2. Median age was 64 years, 48% were female, and 21% were immunocompromised; 798 (25%) were vaccinated with a primary series plus booster, 1,326 (42%) were vaccinated with a primary series alone, and 1,057 (33%) were unvaccinated. Main Outcome Measures: VE against COVID-19 hospitalization was calculated for a primary series plus a booster and a primary series alone by comparing the odds of being vaccinated with each of these regimens versus being unvaccinated among cases versus controls. VE analyses were stratified by immune status (immunocompetent; immunocompromised) because the recommended vaccine schedules are different for these groups. The primary analysis evaluated all COVID-19 vaccine types combined and secondary analyses evaluated specific vaccine products. Results: Among immunocompetent patients, VE against Omicron COVID-19 hospitalization for a primary series plus one booster of any vaccine product dose was 77% (95% CI: 71-82%), and for a primary series alone was 44% (95% CI: 31-54%) (p<0.001). VE was higher for a boosted regimen than a primary series alone for both mRNA vaccines used in the US (BNT162b2: primary series plus booster VE 80% (95% CI: 73-85%), primary series alone VE 46% (95% CI: 30-58%) [p<0.001]; mRNA-1273: primary series plus booster VE 77% (95% CI: 67-83%), primary series alone VE 47% (95% CI: 30-60%) [p<0.001]). Among immunocompromised patients, VE for a primary series of any vaccine product against Omicron COVID-19 hospitalization was 60% (95% CI: 41-73%). Insufficient sample size has accumulated to calculate effectiveness of boosted regimens for immunocompromised patients. Conclusions: Among immunocompetent people, a booster dose of COVID-19 vaccine provided additional benefit beyond a primary vaccine series alone for preventing COVID-19 hospitalization due to the Omicron variant.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270772

RESUMO

By November 2021, after the third SARS-CoV-2 wave in South Africa, seroprevalence was 60% (95%CrI 56%-64%) in a rural and 70% (95%CrI 56%-64%) in an urban community; highest in individuals aged 13-18 years. High seroprevalence prior to Omicron emergence may have contributed to reduced severity observed in the 4th wave. Article Summary LineIn South Africa, after a third wave of SARS-CoV-2 infections, seroprevalence was 60% in a rural and 70% in an urban community, with case-to-infection, - hospitalization and -fatality ratios similar to the second wave.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270854

RESUMO

Understanding the build-up of immunity with successive SARS-CoV-2 variants and the epidemiological conditions that favor rapidly expanding epidemics will facilitate future pandemic control. High-resolution infection and serology data from longitudinal household cohorts in South Africa reveal high cumulative infection rates and durable cross-protective immunity conferred by prior infection in the pre-Omicron era. Building on the cohorts history of past exposures to different SARS-CoV-2 variants and vaccination, we use mathematical models to explore the fitness advantage of the Omicron variant and its epidemic trajectory. Modelling suggests the Omicron wave infected a large fraction of the population, leaving a complex landscape of population immunity primed and boosted with antigenically distinct variants. Future SARS-CoV-2 resurgences are likely under a range of scenarios of viral characteristics, population contacts, and residual cross-protection. One Sentence SummaryClosely monitored population in South Africa reveal high cumulative infection rates and durable protection by prior infection against pre-Omicron variants. Modelling indicates that a large fraction of the population has been infected with Omicron; yet epidemic resurgences are plausible under a wide range of epidemiologic scenarios.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257849

RESUMO

BackgroundSARS-CoV-2 infections may be underestimated due to limited testing access, particularly in sub-Saharan Africa. South Africa experienced two SARS-CoV-2 waves, the second associated with emergence of variant 501Y.V2. In this study, we report longitudinal SARS-CoV-2 seroprevalence in cohorts in two communities in South Africa. MethodsWe measured SARS-CoV-2 seroprevalence two monthly in randomly selected household cohorts in a rural and an urban community (July 2020-March 2021). We compared seroprevalence to laboratory-confirmed infections, hospitalisations and deaths reported in the districts to calculate infection-case (ICR), infection-hospitalisation (IHR) and infection-fatality ratio (IFR) in the two waves of infection. FindingsSeroprevalence after the second wave ranged from 18% (95%CrI 10-26%) and 28% (95%CrI 17-41%) in children <5 years to 37% (95%CrI 28-47%) in adults aged 19-34 years and 59% (95%CrI 49-68%) in adults aged 35-59 years in the rural and urban community respectively. Individuals infected in the second wave were more likely to be from the rural site (aOR 4.7, 95%CI 2.9-7.6), and 5-12 years (aOR 2.1, 95%CI 1.1-4.2) or [≥]60 years (aOR 2.8, 95%CI 1.1-7.0), compared to 35-59 years. The in-hospital IFR in the urban site was significantly increased in the second wave 0.36% (95%CI 0.28-0.57%) compared to the first wave 0.17% (95%CI 0.15-0.20%). ICR ranged from 3.69% (95%CI 2.59-6.40%) in second wave at urban community, to 5.55% (95%CI 3.40-11.23%) in first wave in rural community. InterpretationThe second wave was associated with a shift in age distribution of cases from individuals aged to 35-59 to individuals at the extremes of age, higher attack rates in the rural community and a higher IFR in the urban community. Approximately 95% of SARS-CoV-2 infections in these two communities were not reported to the national surveillance system, which has implications for contact tracing and infection containment. FundingUS Centers for Disease Control and Prevention Research in contextO_ST_ABSEvidence before this studyC_ST_ABSSeroprevalence studies provide better estimates of SARS-CoV-2 burden than laboratory-confirmed cases because many infections may be missed due to restricted access to care and testing, or differences in disease severity and health-care seeking behaviour. This underestimation may be amplified in African countries, where testing access may be limited. Seroprevalence data from sub-Saharan Africa are limited, and comparing seroprevalence estimates between countries can be challenging because populations studied and timing of the study relative to country-specific epidemics differs. During the first wave of infections in each country, seroprevalence was estimated at 4% in Kenya and 11% in Zambia. Seroprevalence estimates in South African blood donors is estimated to range between 32% to 63%. South Africa has experienced two waves of infection, with the emergence of the B.1.351/501Y.V2 variant of concern after the first wave. Reported SARS-CoV-2 cases may not be a true reflection of SARS-CoV-2 burden and specifically the differential impact of the first and second waves of infection. Added value of this studyWe collected longitudinal blood samples from prospectively followed rural and urban communities, randomly selected, household cohorts in South Africa between July 2020 and March 2021. From 668 and 598 individuals included from the rural and urban communities, respectively, seroprevalence was found to be 7% (95%CrI 5-9%) and 27% (95%CrI 23-31%), after the first wave of infection, and 26% (95%CrI 22-29%) and 41% (95%CrI 37-45%) after the second wave, in rural and urban study districts, respectively. After standardising for age, we estimated that only 5% of SARS-CoV-2 infections were laboratory-confirmed and reported. Infection-hospitalisation ratios in the urban community were higher in the first (2.01%, 95%CI 1.57-2.57%) and second (2.29%, 95%CI 1.63-3.94%) wave than the rural community where there was a 0.75% (95%CI 0.49-1.41%) and 0.66% (95%CI 0.50-0.98%) infection-hospitalisation ratio in the first and second wave, respectively. When comparing the infection fatality ratios for the first and second SARS-CoV-2 waves, at the urban site, the ratios for both in-hospital and excess deaths to cases were significantly higher in the second wave (0.36%, 95%CI 0.28-0.57% in-hospital and 0.51%, 95%CI 0.34-0.93% excess deaths), compared to the first wave in-hospital (0.17%, 95%CI 0.15-0.20%) and excess (0.13%, 95%CI 0.10-0.17%) fatality ratios, p<0.001 and p<0.001, respectively). In the rural community, the point estimates for infection-fatality ratios also increased in the second wave compared to the first wave for in-hospital deaths, 0.13% (95%CI 0.10-0.23%) first wave vs 0.20% (95%CI 0.13%-0.28%) second wave, and excess deaths (0.51%, 95%CI 0.30-1.06% vs 0.70%, 95%CI 0.49-1.12%), although neither change was statistically significant. Implications of all the available evidenceIn South Africa, the overall prevalence of SARS-CoV-2 infections is substantially underestimated, resulting in many cases being undiagnosed and without the necessary public health action to isolate and trace contacts to prevent further transmission. There were more infections during the first wave in the urban community, and the second wave in the rural community. Although there were less infections during the second wave in the urban community, the infection-fatality ratios were significantly higher compared to the first wave. The lower infection-hospitalisation ratio and higher excess infection-fatality ratio in the rural community likely reflect differences in access to care or prevalence of risk factors for progression to severe disease in these two communities. In-hospital infection-fatality ratios for both communities during the first wave were comparable with what was experienced during the first wave in India (0.15%) for SARS-CoV-2 confirmed deaths. To our knowledge, these are the first longitudinal seroprevalence data from a sub-Saharan Africa cohort, and provide a more accurate understanding of the pandemic, allowing for serial comparisons of antibody responses in relation to reported laboratory-confirmed SARS-CoV-2 infections within diverse communities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...