Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2308814, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38475912

RESUMO

The silicon vacancy (SiV) center in diamond is drawing much attention due to its optical and spin properties, attractive for quantum information processing and sensing. Comparatively little is known, however, about the dynamics governing SiV charge state interconversion mainly due to challenges associated with generating, stabilizing, and characterizing all possible charge states, particularly at room temperature. Here, multi-color confocal microscopy and density functional theory are used to examine photo-induced SiV recombination - from neutral, to single-, to double-negatively charged - over a broad spectral window in chemical-vapor-deposition (CVD) diamond under ambient conditions. For the SiV0 to SiV- transition, a linear growth of the photo-recombination rate with laser power at all observed wavelengths is found, a hallmark of single photon dynamics. Laser excitation of SiV- , on the other hand, yields only fractional recombination into SiV2- , a finding that is interpreted in terms of a photo-activated electron tunneling process from proximal nitrogen atoms.

2.
J Magn Reson ; 331: 107021, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34563333

RESUMO

The emergence of a new class of optically polarizable electronic spins in diamond, nitrogen vacancy (NV) defect centers, has opened interesting new avenues for dynamic nuclear polarization. Here we review methods for the room-temperature hyperpolarization of lattice 13C nuclei using optically pumped NV centers, focusing particular attention to a polarization transfer via rotating-frame level anti-crossings. We describe special features of this optical DNP mechanism at low-field, in particular, its deployability to randomly oriented diamond nanoparticles. In addition, we detail methods for indirectly obtaining high-resolution NV ESR spectra via hyperpolarization readout. These mechanistic features provide perspectives for interesting new applications exploiting the optically generated 13C hyperpolarization.

3.
Rev Sci Instrum ; 91(2): 023106, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113392

RESUMO

Dynamic Nuclear Polarization (DNP) is a powerful suite of techniques that deliver multifold signal enhancements in nuclear magnetic resonance (NMR) and MRI. The generated athermal spin states can also be exploited for quantum sensing and as probes for many-body physics. Typical DNP methods require the use of cryogens, large magnetic fields, and high power microwave excitation, which are expensive and unwieldy. Nanodiamond particles, rich in Nitrogen-Vacancy (NV) centers, have attracted attention as alternative DNP agents because they can potentially be optically hyperpolarized at room temperature. Here, unraveling new physics underlying an optical DNP mechanism first introduced by Ajoy et al. [Sci. Adv. 4, eaar5492 (2018)], we report the realization of a miniature "optical nanodiamond hyperpolarizer," where 13C nuclei within the diamond particles are hyperpolarized via the NV centers. The device occupies a compact footprint and operates at room temperature. Instrumental requirements are very modest: low polarizing fields, low optical and microwave irradiation powers, and convenient frequency ranges that enable miniaturization. We obtain the best reported optical 13C hyperpolarization in diamond particles exceeding 720 times of the thermal 7 T value (0.86% bulk polarization), corresponding to a ten-million-fold gain in averaging time to detect them by NMR. In addition, the hyperpolarization signal can be background-suppressed by over two-orders of magnitude, retained for multiple-minute long periods at low fields, and deployed efficiently even to 13C enriched particles. Besides applications in quantum sensing and bright-contrast MRI imaging, this work opens possibilities for low-cost room-temperature DNP platforms that relay the 13C polarization to liquids in contact with the high surface-area particles.

4.
Nat Commun ; 10(1): 5160, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727898

RESUMO

The origins of spin lifetimes in quantum systems is a matter of importance in several areas of quantum information. Spectrally mapping spin relaxation processes provides insight into their origin and motivates methods to mitigate them. In this paper, we map nuclear relaxation in a prototypical system of [Formula: see text] nuclei in diamond coupled to Nitrogen Vacancy (NV) centers over a wide field range (1 mT-7 T). Nuclear hyperpolarization through optically pumped NV electrons allows signal measurement savings exceeding million-fold over conventional methods. Through a systematic study with varying substitutional electron (P1 center) and [Formula: see text] concentrations, we identify the operational relaxation channels for the nuclei at different fields as well as the dominant role played by [Formula: see text] coupling to the interacting P1 electronic spin bath. These results motivate quantum control techniques for dissipation engineering to boost spin lifetimes in diamond, with applications including engineered quantum memories and hyperpolarized [Formula: see text] imaging.

5.
Rev Sci Instrum ; 90(1): 013112, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709175

RESUMO

We describe the construction of a fast field cycling device capable of sweeping a 4-order-of-magnitude range of magnetic fields, from ∼1 mT to 7 T, in under 700 ms, and which is further extendable to a 1 nT-7 T range. Central to this system is a high-speed sample shuttling mechanism between a superconducting magnet and a magnetic shield, with the capability to access arbitrary fields in between with high resolution. Our instrument serves as a versatile platform to harness the inherent dichotomy of spin dynamics on offer at low and high fields-in particular, the low anisotropy, fast spin manipulation, and rapid entanglement growth at low field as well as the long spin lifetimes, spin specific control, and efficient inductive measurement possible at high fields. Exploiting these complementary capabilities in a single device opens up applications in a host of problems in quantum control, sensing, and information storage, besides in nuclear hyperpolarization, relaxometry, and imaging. In particular, in this paper, we focus on the ability of the device to enable low-field hyperpolarization of 13C nuclei in diamond via optically pumped electronic spins associated with nitrogen vacancy defect centers.

6.
Proc Natl Acad Sci U S A ; 115(42): 10576-10581, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30279178

RESUMO

Dynamic nuclear polarization (DNP) has enabled enormous gains in magnetic resonance signals and led to vastly accelerated NMR/MRI imaging and spectroscopy. Unlike conventional cw-techniques, DNP methods that exploit the full electron spectrum are appealing since they allow direct participation of all electrons in the hyperpolarization process. Such methods typically entail sweeps of microwave radiation over the broad electron linewidth to excite DNP but are often inefficient because the sweeps, constrained by adiabaticity requirements, are slow. In this paper, we develop a technique to overcome the DNP bottlenecks set by the slow sweeps, using a swept microwave frequency comb that increases the effective number of polarization transfer events while respecting adiabaticity constraints. This allows a multiplicative gain in DNP enhancement, scaling with the number of comb frequencies and limited only by the hyperfine-mediated electron linewidth. We demonstrate the technique for the optical hyperpolarization of 13C nuclei in powdered microdiamonds at low fields, increasing the DNP enhancement from 30 to 100 measured with respect to the thermal signal at 7T. For low concentrations of broad linewidth electron radicals [e.g., TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl)], these multiplicative gains could exceed an order of magnitude.

7.
Nano Lett ; 18(6): 3731-3737, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29719156

RESUMO

The ability to optically initialize the electronic spin of the nitrogen-vacancy (NV) center in diamond has long been considered a valuable resource to enhance the polarization of neighboring nuclei, but efficient polarization transfer to spin species outside the diamond crystal has proven challenging. Here we demonstrate variable-magnetic-field, microwave-enabled cross-polarization from the NV electronic spin to protons in a model viscous fluid in contact with the diamond surface. Further, slight changes in the cross-relaxation rate as a function of the wait time between successive repetitions of the transfer protocol suggest slower molecular dynamics near the diamond surface compared to that in bulk. This observation is consistent with present models of the microscopic structure of a fluid and can be exploited to estimate the diffusion coefficient near a solid-liquid interface, of importance in colloid science.

8.
Nat Commun ; 6: 8527, 2015 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-26456017

RESUMO

We demonstrate a protocol using individual nitrogen-vacancy centres in diamond to observe the time evolution of proton spins from organic molecules located a few nanometres from the diamond surface. The protocol records temporal correlations among the interacting protons, and thus is sensitive to the local dynamics via its impact on the nuclear spin relaxation and interaction with the nitrogen vacancy. We gather information on the nanoscale rotational and translational diffusion dynamics by analysing the time dependence of the nuclear magnetic resonance signal. Applying this technique to liquid and solid samples, we find evidence that liquid samples form a semi-solid layer of 1.5-nm thickness on the surface of diamond, where translational diffusion is suppressed while rotational diffusion remains present. Extensions of the present technique could be exploited to highlight the chemical composition of molecules tethered to the diamond surface or to investigate thermally or chemically activated dynamical processes such as molecular folding.

9.
Science ; 339(6119): 561-3, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23372009

RESUMO

Application of nuclear magnetic resonance (NMR) spectroscopy to nanoscale samples has remained an elusive goal, achieved only with great experimental effort at subkelvin temperatures. We demonstrated detection of NMR signals from a (5-nanometer)(3) voxel of various fluid and solid organic samples under ambient conditions. We used an atomic-size magnetic field sensor, a single nitrogen-vacancy defect center, embedded ~7 nanometers under the surface of a bulk diamond to record NMR spectra of various samples placed on the diamond surface. Its detection volume consisted of only 10(4) nuclear spins with a net magnetization of only 10(2) statistically polarized spins.

10.
Appl Opt ; 50(5): 648-54, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-21343985

RESUMO

Recent work demonstrating detection of nuclear spin magnetization via Faraday rotation in transparent fluids promises novel opportunities for magnetic resonance imaging and spectroscopy. Unfortunately, low sensitivity is a serious concern. With this motivation in mind, we explore the use of an optical cavity to augment the Faraday rotation experienced by a linearly polarized beam traversing a sample fluid. Relying on a setup that affords reduced sample size and high-frequency modulation, we demonstrate amplification of regular (i.e., nonnuclear) Faraday rotation of order 20. Extensions of the present methodology that take into account the geometric constraints imposed by a high-field magnet may open the way to high-sensitivity, optically-detected magnetic resonance in the liquid state.

11.
J Magn Reson ; 186(2): 330-6, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17363306

RESUMO

We explore the dipolar interactions between two separate nuclear spin ensembles in a mixture containing oil and water. Here we expand initial results [C.A. Meriles, W. Dong, J. Magn. Reson. 181 (2006) 331.] to the case in which both systems have the shape of flat, stacked disks. We find that-in spite of the strong inhomogeneity of the coupling dipolar field-the signal encoded in one of the components can be made approximately proportional to the magnetization in the other. This allows us to use one of these systems as a 'sensor' to indirectly reconstruct the resonance spectrum or to determine the relaxation time of the 'sample' system. In the regime in which dipolar interactions are sufficiently strong, our method can be set to scale-up weaker signals in a non-linear fashion, which, potentially, could allow one to introduce contrast or to improve detection sensitivity of less magnetized samples.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Óleos/química , Água/química , Análise de Fourier , Magnetismo , Fatores de Tempo
12.
J Magn Reson ; 182(1): 106-14, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16828321

RESUMO

Today, all commonly practiced magnetic resonance imaging (MRI) reconstruction methods assume that the magnetic field created by the gradient coils is everywhere truncated by a dominant static uniform magnetic field. However, with the advent of SQUID detected MRI at microtesla fields, the opposite limit attracts attention, i.e., image formation in the unperturbed tensor field of the gradient coils. Here, we show by numerical simulations that, in principle, it is possible to reconstruct the image of an object in the absence of a uniform static field, working with the same gradient field setup as used in conventional MRI. Our calculations show that this approach could increase the image resolution limit attainable at low fields with a minimal incorporation of additional hardware and pulse sequences.

13.
J Magn Reson ; 181(2): 331-5, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16697226

RESUMO

We report the indirect detection of the magnetization of one spin species via the NMR signal of a second species. Our method relies on the control of long-range dipolar fields between two separate objects, in this case, a water droplet (sensor) immersed in a tube containing mineral oil (sample). Unlike prior experiments, no gradient pulses are used; rather, the setup geometry is exploited to select the part of the sample to be probed and modulate the spin alignment in the sensor. Our results are discussed in the context of Dipolar Field Microscopy, a proposed strategy in which the detector is a hyperpolarized tip.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Silicones/química
14.
Science ; 293(5527): 82-5, 2001 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-11441177

RESUMO

Nuclear magnetic resonance (NMR) experiments are typically performed with samples immersed in a magnet shimmed to high homogeneity. However, there are many circumstances in which it is impractical or undesirable to insert objects or subjects into the bore of a high-field magnet. Here we present a methodology based on an adaptation of nutation echoes that provides resolved spectra in the presence of matched inhomogeneous static and radiofrequency fields, thereby opening the way to high-resolution ex situ NMR. The observation of chemical shifts is regained through the use of multiple-pulse sequences of correlated, composite z-rotation pulses, producing resolved NMR spectra of liquid samples.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Magnetismo , Prótons , Rotação , Soluções
15.
J Magn Reson ; 149(2): 188-95, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11318617

RESUMO

Goldman's spin-1/2 formalism has been used for describing the response of an I=3/2 spin system to a two-pulse sequence in a pure nuclear quadrupole resonance experiment. A detailed analysis of the polarization evolution and quadrupolar echo generation is carried out through the use of explicit expressions for secular homo- and heteronuclear dipolar interactions. In striking contrast with previous studies, it is predicted that Van Vleck's second moments governing a classical solid-echo or Hahn sequence differ from those obtained by equivalent means in magnetic resonance. In fact, it is shown that, although measured moments still complement each other, the combined use of standard sequences does not allow the separate determination of homo- and heteronuclear dipolar contributions to the linewidth, not even in an indirect manner. In this context, the importance and potential usefulness of a crossed coil probe are also briefly discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...