Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1397517, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751975

RESUMO

Background: Collagen is one of the major proteins of the skin and it is particularly important for its strength and resilience. Skin aging is a natural process that is characterized by the decrease and fragmentation of collagen in the dermis. Oral supplementation with collagen peptides has been clinically shown to have a positive effect on the skin condition. However, the mechanisms of aging-related changes synthesized by cells exposed to collagen are currently not well understood. Therefore, in this in vitro study, the mechanisms associated with collagen, elastin, and versican in human dermal fibroblasts were investigated after exposure to collagen peptides. Methods: The effects of different concentrations of collagen peptides on cell viability and metabolism were analyzed. For gene expression analysis, human dermal fibroblasts were treated with collagen peptides. This was then followed by RNA extraction and DNA synthesis. Gene expressions of collagen type 1 (COL1A1), elastin (ELN), and versican (VCAN) were quantified by quantitative reverse transcription polymerase chain reaction (RT-qPCR). In addition, collagen levels were analyzed by confocal scanning laser microscopy using immunostaining. Results: Collagen peptides tested in the study increased the expression of the relevant COL1A1, ELN, and VCAN genes in human dermal fibroblasts (p < 0.005). Furthermore, confocal microscopy showed increased collagen expression in the dermal fibroblast culture after treatment with the collagen peptides (p < 0.005). Conclusion: These data provide cell-based evidence for the beneficial effects of exposure to collagen peptides on the skin's collagen content and on the molecules that provide firmness and elasticity. This may support the hypothesis that collagen peptides are important for maintaining extracellular matrix (ECM) structure and skin regeneration.

2.
Curr Issues Mol Biol ; 46(2): 1530-1555, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38392217

RESUMO

Air pollution is a growing threat to human health. Airborne pollution effects on respiratory, cardiovascular and skin health are well-established. The main mechanisms of air-pollution-induced health effects involve oxidative stress and inflammation. The present study evaluates the potential of a polyphenol-enriched food supplement ingredient comprising Lippia citriodora, Olea europaea, Rosmarinus officinalis, and Sophora japonica extracts in mitigating the adverse effects of environmental pollution on skin and cardiopulmonary systems. Both in vitro and ex vivo studies were used to assess the blend's effects against pollution-induced damage. In these studies, the botanical blend was found to reduce lipid peroxidation, inflammation (by reducing IL-1α), and metabolic alterations (by regulating MT-1H, AhR, and Nrf2 expression) in human skin explants exposed to a mixture of pollutants. Similar results were also observed in keratinocytes exposed to urban dust. Moreover, the ingredient significantly reduced pollutant-induced ROS production in human endothelial cells and lung fibroblasts, while downregulating the expression of apoptotic genes (bcl-2 and bax) in lung fibroblasts. Additionally, the blend counteracted the effect of urban dust on the heart rate in zebrafish embryos. These results support the potential use of this supplement as an adjuvant method to reduce the impact of environmental pollution on the skin, lungs, and cardiovascular tissues.

3.
Int J Mol Sci ; 24(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37894844

RESUMO

Huntington's disease (HD) is an inherited neurodegenerative disorder considered a rare disease with a prevalence of 5.7 per 100,000 people. It is caused by an autosomal dominant mutation consisting of expansions of trinucleotide repeats that translate into poly-glutamine enlarged mutant huntingtin proteins (mHTT), which are particularly deleterious in brain tissues. Since there is no cure for this progressive fatal disease, searches for new therapeutic approaches are much needed. The small molecule pytren-4QMn (4QMn), a highly water-soluble mimic of the enzyme superoxide dismutase, has shown in vivo beneficial anti-inflammatory activity in mice and was able to remove mHTT deposits in a C. elegans model of HD. In this study, we assessed 4QMn therapeutic potential in zQ175 neo-deleted knock-in mice, a model of HD that closely mimics the heterozygosity, genetic injury, and progressive nature of the human disease. We provide evidence that 4QMn has good acute and chronic tolerability, and can cross the blood-brain barrier, and in male, but not female, zQ175 mice moderately ameliorate HD-altered gene expression, mHtt aggregation, and HD disease phenotype. Our data highlight the importance of considering sex-specific differences when testing new therapies using animal models and postulate 4QMn as a potential novel type of small water-soluble metal complex that could be worth further investigating for its therapeutic potential in HD, as well as in other polyglutamine diseases.


Assuntos
Doença de Huntington , Feminino , Camundongos , Humanos , Masculino , Animais , Camundongos Transgênicos , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/metabolismo , Caenorhabditis elegans , Modelos Animais de Doenças , Água , Proteína Huntingtina/genética
4.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012207

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, of the so-called minority diseases, due to its low prevalence. It is caused by an abnormally long track of glutamines (polyQs) in mutant huntingtin (mHtt), which makes the protein toxic and prone to aggregation. Many pathways of clearance of badly-folded proteins are disrupted in neurons of patients with HD. In this work, we show that one Mn(II) quinone complex (4QMn), designed to work as an artificial superoxide dismutase, is able to activate both the ubiquitin-proteasome system and the autophagy pathway in vitro and in vivo models of HD. Activation of these pathways degrades mHtt and other protein-containing polyQs, which restores proteostasis in these models. Hence, we propose 4QMn as a potential drug to develop a therapy to treat HD.


Assuntos
Doença de Huntington , Quinolinas , Animais , Modelos Animais de Doenças , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Manganês , Modelos Teóricos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteostase , Quinolinas/uso terapêutico
5.
Chem Commun (Camb) ; 58(32): 5021-5024, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35373809

RESUMO

A novel amino-nanozyme, based on boehmite nanoparticles (BNPs) functionalised with a tetra-azapyridinophane (L1), has been designed to undermine some of the key issues underlying Huntington disease. L1 forms Cu2+ complexes with a striking SOD activity, while when grafted to the BNPs displays mitoROS scavenging properties and ability to disaggregate mutant huntingtin deposits in cells.


Assuntos
Antioxidantes , Doença de Huntington , Hidróxido de Alumínio , Óxido de Alumínio , Antioxidantes/farmacologia , Humanos , Corpos de Inclusão
6.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34638956

RESUMO

NANOG is a key transcription factor required for maintaining pluripotency of embryonic stem cells. Elevated NANOG expression levels have been reported in many types of human cancers, including lung, oral, prostate, stomach, breast, and brain. Several studies reported the correlation between NANOG expression and tumor metastasis, revealing itself as a powerful biomarker of poor prognosis. However, how NANOG regulates tumor progression is still not known. We previously showed in medaka fish that Nanog regulates primordial germ cell migration through Cxcr4b, a chemokine receptor known for its ability to promote migration and metastasis in human cancers. Therefore, we investigated the role of human NANOG in CXCR4-mediated cancer cell migration. Of note, we found that NANOG regulatory elements in the CXCR4 promoter are functionally conserved in medaka fish and humans, suggesting an evolutionary conserved regulatory axis. Moreover, CXCR4 expression requires NANOG in human glioblastoma cells. In addition, transwell assays demonstrated that NANOG regulates cancer cell migration through the SDF1/CXCR4 pathway. Altogether, our results uncover NANOG-CXCR4 as a novel pathway controlling cellular migration and support Nanog as a potential therapeutic target in the treatment of Nanog-dependent tumor progression.


Assuntos
Neoplasias Encefálicas/metabolismo , Movimento Celular/genética , Quimiocina CXCL12/metabolismo , Glioblastoma/metabolismo , Proteína Homeobox Nanog/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/genética , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Glioblastoma/patologia , Células HEK293 , Humanos , Proteína Homeobox Nanog/genética , Oryzias/embriologia , Regiões Promotoras Genéticas , Transfecção
7.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796742

RESUMO

Continuous overexposure to sunlight increases its harmful effects on the skin. For this reason, there is a growing need to characterize economic models more representative of the negative effects and counteracting responses that irradiation causes on human skin. These models will serve for the screening of protective compounds against damage caused by ultraviolet (UV) and high energy visible light (HEV). Therefore, two common in vitro models employed for sunlight irradiation studies, namely human keratinocyte HaCat culture and reconstructed human epidermis (RHE), were compared with the medaka fish embryo model, traditionally used in other scientific disciplines. Using suberythemal doses of UVA and HEV to determine the level of Reactive Oxygen Species (ROS) generation and thymine dimers formed by UVB, we show that medaka embryo responds with a lower damage level, more comparable to human skin, than the other two models, probably due to the protective mechanisms that work in a complete organism. In the same way, the protective effects of antioxidant compounds have the greatest effect on medaka embryos. Taken together, these findings suggest that medaka embryos would be a good alternative in vitro model for sunlight effect studies, and for the screening of molecules with counteracting capacity against the damage caused by UV and HEV.


Assuntos
Dano ao DNA , Avaliação Pré-Clínica de Medicamentos , Embrião não Mamífero/efeitos da radiação , Modelos Biológicos , Oryzias/embriologia , Raios Ultravioleta , Animais , Antioxidantes/farmacologia , Epiderme/efeitos da radiação , Células HaCaT , Humanos , Espécies Reativas de Oxigênio/metabolismo
8.
Int J Pharm ; 485(1-2): 87-96, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746947

RESUMO

The surface properties of intravenously injected nanoparticles determine the acquired blood protein adsorption pattern and subsequently the organ distribution and cellular recognition. A series of poly[acrylonitrile-co-(N-vinyl pyrrolidone)] (PANcoNVP) model nanoparticles (133-181 nm) was synthesized, in which the surface properties were altered by changing the molar content of NVP (0-33.8 mol%) as the more hydrophilic repeating unit. The extent of achieved surface property variation was comprehensively characterized. The residual sodium dodecyl sulfate (SDS) content from the synthesis was in the range 0.3-1.6 µgml(-1), potentially contributing to the surface properties. Surface hydrophobicity was determined by Rose Bengal dye adsorption, hydrophobic interaction chromatography (HIC) and aqueous two-phase partitioning (TPP). Particle charge was quantified by zeta potential (ZP) measurements including ZP-pH profiles. The interaction with proteins was analyzed by ZP measurements in serum and by adsorption studies with single proteins. Compared to hydrophobic polystyrene model nanoparticles, all PANcoNVP particles were very hydrophilic. Differences in surface hydrophobicity could be detected, which did not linearly correlate with the systematically altered bulk composition of the PANcoNVP nanoparticles. This proves the high importance of a thorough surface characterization applying a full spectrum of methods, complementing predictions solely based on bulk polymer composition.


Assuntos
Resinas Acrílicas/química , Portadores de Fármacos , Fibronectinas/química , Nanopartículas , Cloreto de Polivinila/química , Soroalbumina Bovina/química , Resinas Acrílicas/metabolismo , Adsorção , Química Farmacêutica , Cromatografia , Fibronectinas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Nanotecnologia , Cloreto de Polivinila/metabolismo , Ligação Proteica , Soroalbumina Bovina/metabolismo , Dodecilsulfato de Sódio/química , Propriedades de Superfície , Tecnologia Farmacêutica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...