Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(1): e0104923, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38112473

RESUMO

We present the complete genome sequences of two viruses with siphovirus morphology, isolated from soils collected in Southwestern Indiana using the host Streptomyces griseus. Spelly is a BE2 cluster phage with a 131,347-bp genome. Phredrick is a BK1 cluster phage with a 128,873-bp genome.

2.
J Microbiol Biol Educ ; 24(3)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38107988

RESUMO

The Fly-CURE is a genetics-focused multi-institutional Course-Based Undergraduate Research Experience (CURE) that provides undergraduate students with hands-on research experiences within a course. Through the Fly-CURE, undergraduate students at diverse types of higher education institutions across the United States map and characterize novel mutants isolated from a genetic screen in Drosophila melanogaster. To date, more than 20 mutants have been studied across 20 institutions, and our scientific data have led to eleven publications with more than 500 students as authors. To evaluate the impact of the Fly-CURE experience on students, we developed and validated assessment tools to identify students' perceived research self-efficacy, sense of belonging in science, and intent to pursue additional research opportunities. Our data, collected over three academic years and involving 14 institutions and 480 students, show gains in these metrics after completion of the Fly-CURE across all student subgroups analyzed, including comparisons of gender, academic status, racial and ethnic groups, and parents' educational background. Importantly, our data also show differential gains in the areas of self-efficacy and interest in seeking additional research opportunities between Fly-CURE students with and without prior research experience, illustrating the positive impact of research exposure (dosage) on student outcomes. Altogether, our data indicate that the Fly-CURE experience has a significant impact on students' efficacy with research methods, sense of belonging to the scientific research community, and interest in pursuing additional research experiences.

3.
bioRxiv ; 2023 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-36712137

RESUMO

The Fly-CURE is a genetics-focused multi-institutional Course-Based Undergraduate Research Experience (CURE) that provides undergraduate students with hands-on research experiences within a course. Through the Fly-CURE, undergraduate students at diverse types of higher education institutions across the United States map and characterize novel mutants isolated from a genetic screen in Drosophila melanogaster. To evaluate the impact of the Fly-CURE experience on students, we developed and validated assessment tools to identify students' perceived research self-efficacy, sense of belonging in science, and intent to pursue additional research opportunities. Our data show gains in these metrics after completion of the Fly-CURE across all student subgroups analyzed, including comparisons of gender, academic status, racial and ethnic groups, and parents' educational background. Importantly, our data also show differential gains in the areas of self-efficacy and interest in seeking additional research opportunities between Fly-CURE students with and without prior research experience, illustrating the positive impact of research exposure (dosage) on student outcomes. Altogether, our data indicate that the Fly-CURE experience has a significant impact on students' efficacy with research methods, sense of belonging to the scientific community, and interest in pursuing additional research experiences.

4.
Methods Mol Biol ; 2626: 49-68, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36715899

RESUMO

Studies of the Drosophila ovary have provided significant insight into the molecular and cellular processes that control cell function, tissue organization, and animal development. To characterize mutants with defects in oogenesis or to observe the distribution of gene products involved in egg production, the ovaries must be carefully extracted and prepared for analysis. This chapter describes the manual dissection of ovaries from adult Drosophila females, followed by standard fixation and staining of the isolated tissue. Specifically, this chapter provides procedures for simple DNA and F-actin staining to assess cell and tissue morphology, as well as immunostaining to localize proteins of interest.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Feminino , Drosophila/metabolismo , Ovário , Oogênese/genética , Proteínas de Drosophila/metabolismo , Coloração e Rotulagem , Drosophila melanogaster/metabolismo
5.
Curr Top Dev Biol ; 140: 55-86, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32591083

RESUMO

In Drosophila, specification of the embryonic body axes requires signaling between the germline and the somatic follicle cells. These signaling events are necessary to properly localize embryonic patterning determinants in the egg or eggshell during oogenesis. There are three maternal patterning systems that specify the anterior-posterior axis, and one that establishes the dorsal-ventral axis. We will first review oogenesis, focusing on the establishment of the oocyte and nurse cells and patterning of the follicle cells into different subpopulations. We then describe how two coordinated signaling events between the oocyte and follicle cells establish polarity of the oocyte and localize the anterior determinant bicoid, the posterior determinant oskar, and Gurken/epidermal growth factor (EGF), which breaks symmetry to initiate dorsal-ventral axis establishment. Next, we review how dorsal-ventral asymmetry of the follicle cells is transmitted to the embryo. This process also involves Gurken-EGF receptor (EGFR) signaling between the oocyte and follicle cells, leading to ventrally-restricted expression of the sulfotransferase Pipe. These events promote the ventral processing of Spaetzle, a ligand for Toll, which ultimately sets up the embryonic dorsal-ventral axis. We then describe the activation of the terminal patterning system by specialized polar follicle cells. Finally, we present open questions regarding soma-germline signaling during Drosophila oogenesis required for cell identity and embryonic axis formation.


Assuntos
Padronização Corporal/genética , Drosophila/genética , Embrião não Mamífero/metabolismo , Oócitos/metabolismo , Oogênese/genética , Transdução de Sinais/genética , Animais , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Oócitos/citologia
6.
Front Cell Dev Biol ; 8: 19, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117961

RESUMO

Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism's lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.

7.
Biol Open ; 7(7)2018 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-29945873

RESUMO

Cdc14 is an evolutionarily conserved serine/threonine phosphatase. Originally identified in Saccharomyces cerevisiae as a cell cycle regulator, its role in other eukaryotic organisms remains unclear. In Drosophila melanogaster, Cdc14 is encoded by a single gene, thus facilitating its study. We found that Cdc14 expression is highest in the testis of adult flies and that cdc14 null flies are viable. cdc14 null female and male flies do not display altered fertility. cdc14 null males, however, exhibit decreased sperm competitiveness. Previous studies have shown that Cdc14 plays a role in ciliogenesis during zebrafish development. In Drosophila, sensory neurons are ciliated. We found that the Drosophila cdc14 null mutants have defects in chemosensation and mechanosensation as indicated by decreased avoidance of repellant substances and decreased response to touch. In addition, we show that cdc14 null mutants have defects in lipid metabolism and resistance to starvation. These studies highlight the diversity of Cdc14 function in eukaryotes despite its structural conservation.

8.
Development ; 141(6): 1332-41, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24553286

RESUMO

We previously identified a Drosophila maternal effect-lethal mutant named 'no poles' (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid cycles of syncytial embryogenesis because of activation of a Chk2-mediated DNA checkpoint. NOPO is the Drosophila homolog of human TNF receptor associated factor (TRAF)-interacting protein (TRIP), which has been implicated in TNF signaling. NOPO and TRIP contain RING domains closely resembling those of known E3 ubiquitin ligases. We herein sought to elucidate the mechanism by which TRIP/NOPO promotes genomic stability by performing a yeast two-hybrid screen to identify potential substrates/interactors. We identified members of the Y-family of DNA polymerases that facilitate replicative bypass of damaged DNA (translesion synthesis) as TRIP interactors. We show that TRIP and NOPO co-immunoprecipitate with human and Drosophila Polη, respectively, from cultured cells. We generated a null mutation in Drosophila Polη (dPolη) and found that dPolη-derived embryos have increased sensitivity to ultraviolet irradiation and exhibit nopo-like mitotic spindle defects. dPolη and nopo interact genetically in that overexpression of dPolη in hypomorphic nopo-derived embryos suppresses nopo phenotypes. We observed enhanced ubiquitylation of Polη by TRIP and NOPO E3 ligases in human cells and Drosophila embryos, respectively, and show that TRIP promotes hPolη localization to nuclear foci in human cells. We present a model in which TRIP/NOPO ubiquitylates Polη to positively regulate its activity in translesion synthesis.


Assuntos
DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Animais Geneticamente Modificados , Dano ao DNA , DNA Polimerase Dirigida por DNA/deficiência , DNA Polimerase Dirigida por DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Instabilidade Genômica , Células HeLa , Humanos , Modelos Biológicos , Mutação , Transdução de Sinais , Peptídeos e Proteínas Associados a Receptores de Fatores de Necrose Tumoral/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
9.
Dev Biol ; 386(1): 42-52, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24333177

RESUMO

We previously showed that asunder (asun) is a critical regulator of dynein localization during Drosophila spermatogenesis. Because the expression of asun is much higher in Drosophila ovaries and early embryos than in testes, we herein sought to determine whether ASUN plays roles in oogenesis and/or embryogenesis. We characterized the female germline phenotypes of flies homozygous for a null allele of asun (asun(d93)). We find that asun(d93) females lay very few eggs and contain smaller ovaries with a highly disorganized arrangement of ovarioles in comparison to wild-type females. asun(d93) ovaries also contain a significant number of egg chambers with structural defects. A majority of the eggs laid by asun(d93) females are ventralized to varying degrees, from mild to severe; this ventralization phenotype may be secondary to defective localization of gurken transcripts, a dynein-regulated step, within asun(d93) oocytes. We find that dynein localization is aberrant in asun(d93) oocytes, indicating that ASUN is required for this process in both male and female germ cells. In addition to the loss of gurken mRNA localization, asun(d93) ovaries exhibit defects in other dynein-mediated processes such as migration of nurse cell centrosomes into the oocyte during the early mitotic divisions, maintenance of the oocyte nucleus in the anterior-dorsal region of the oocyte in late-stage egg chambers, and coupling between the oocyte nucleus and centrosomes. Taken together, our data indicate that asun is a critical regulator of dynein localization and dynein-mediated processes during Drosophila oogenesis.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Oogênese/genética , Alelos , Animais , Padronização Corporal , Linhagem da Célula , Núcleo Celular/metabolismo , Centrossomo/metabolismo , Dineínas/metabolismo , Feminino , Genótipo , Homozigoto , Hibridização In Situ , Masculino , Oócitos/metabolismo , Ovário/metabolismo , Fenótipo , Fatores Sexuais , Testículo/metabolismo , Transgenes
10.
Development ; 136(3): 449-59, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19141674

RESUMO

In a screen for cell-cycle regulators, we identified a Drosophila maternal effect-lethal mutant that we named ;no poles' (nopo). Embryos from nopo females undergo mitotic arrest with barrel-shaped, acentrosomal spindles during the rapid S-M cycles of syncytial embryogenesis. We identified CG5140, which encodes a candidate RING domain-containing E3 ubiquitin ligase, as the nopo gene. A conserved residue in the RING domain is altered in our EMS-mutagenized allele of nopo, suggesting that E3 ligase activity is crucial for NOPO function. We show that mutation of a DNA checkpoint kinase, CHK2, suppresses the spindle and developmental defects of nopo-derived embryos, revealing that activation of a DNA checkpoint operational in early embryos contributes significantly to the nopo phenotype. CHK2-mediated mitotic arrest has been previously shown to occur in response to mitotic entry with DNA damage or incompletely replicated DNA. Syncytial embryos lacking NOPO exhibit a shorter interphase during cycle 11, suggesting that they may enter mitosis prior to the completion of DNA replication. We show that Bendless (BEN), an E2 ubiquitin-conjugating enzyme, interacts with NOPO in a yeast two-hybrid assay; furthermore, ben-derived embryos arrest with a nopo-like phenotype during syncytial divisions. These data support our model that an E2-E3 ubiquitination complex consisting of BEN-UEV1A (E2 heterodimer) and NOPO (E3 ligase) is required for the preservation of genomic integrity during early embryogenesis.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/enzimologia , Ubiquitina-Proteína Ligases/fisiologia , Sequência de Aminoácidos , Animais , Quinase do Ponto de Checagem 2 , Dano ao DNA , Drosophila/embriologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/fisiologia , Feminino , Células HeLa , Humanos , Mitose , Dados de Sequência Molecular , Mutação , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Fuso Acromático/genética , Fuso Acromático/ultraestrutura , Técnicas do Sistema de Duplo-Híbrido , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...