Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mitochondrion ; 67: 6-14, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36115539

RESUMO

Based on current studies, the incidence of Ewing sarcoma (ES) varies significantly by race and ethnicity, with the disease being most common in patients of European ancestry. However, race/ethnicity has generally been self-reported rather than formally evaluated at a population level using DNA evidence. Additionally, mitochondrial dysfunction is a hallmark of ES, yet there have been no reported studies of mitochondrial genetics in ES. Thus, we evaluated both the mitochondrial and nuclear ancestries of 420 pediatric ES patients in the United States using whole-genome sequencing. We found that the mitochondrial DNA (mtDNA) genomes of only six (1.4 %) patients belonged to African L haplogroups, while those of 90 % of the patients belonged to macrohaplogroup R, which includes haplogroup H, the most common maternal lineage in Europe. Compared to the general US population, European haplogroups were significantly enriched in ES patients (p < 2.2e-16) and the African haplogroups are significantly impoverished (p < 4.6e-16). Using the ancestry informative markers defined in a National Genographic study, the vast majority of patients exhibited significant nuclear ancestry originating from the Mediterranean, Northern Europe, and Southwest Asia, including all six patients with African L mtDNAs. Very few had primarily African nuclear ancestry. This is the first genomic epidemiology study to simultaneously interrogate the mitochondrial and nuclear ancestries of ES patients. While supporting previous findings of enriched European ancestry in ES patients, these results also suggest alternative hypotheses for the significant contribution of mitochondrial ancestry in ES patients, as well as the protective role of African ancestry.


Assuntos
DNA Mitocondrial , Sarcoma de Ewing , Humanos , Criança , DNA Mitocondrial/genética , Haplótipos , Sarcoma de Ewing/genética , População Negra , Mitocôndrias/genética
2.
Methods Mol Biol ; 2454: 31-47, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34505265

RESUMO

Human induced pluripotent and embryonic stem cell cultures (hiPSC/hESC) are phenotypically heterogeneous and prone to clonal deviations during subculturing and differentiation. Clonal deviations often emerge unnoticed, but they can change the biology of the cell culture with a negative impact on experimental reproducibility. Here, we describe a computational workflow to profile the bulk clonal composition in a hiPSC/hESC culture that can also be used to infer clonal deviations. This workflow processes data obtained with two versions of the same method. The two versions-epigenetic and transcriptomic-rely on a mechanism of stochastic H3K4me3 deposition during hiPSC/hESC derivation. This mechanism generates a signature of ten or more H3K4me3-enriched clustered protocadherin (PCDH) promoters distinct in every single cell. The aggregate of single-cell signatures provides an identificatory feature in every hiPSC/hESC line. This feature is stably transmitted to the cell progeny of the culture even after differentiation unless there is a clonal deviation event that changes the internal balance of single-cell signatures. H3K4me3 signatures can be profiled by chromatin immunoprecipitation and next-generation sequencing (ChIP-seq). Alternatively, an equivalent PCDH-expression version can be profiled by RNA-seq in PCDH-expressing hiPSC/hESC-derived cells (such as neurons, astrocytes, and cardiomyocytes; and, in long-term cultures, such as cerebral organoids). Notably, our workflow can also distinguish genetically identical hiPSC/hESC lines derived from the same patient or generated in the same editing process. Together, we propose a method to improve data sharing and reproducibility in the hiPSC and hESC fields.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/genética , Linhagem Celular , Células-Tronco Embrionárias , Humanos , Reprodutibilidade dos Testes
3.
Neurooncol Adv ; 3(1): vdab074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34337412

RESUMO

BACKGROUND: We previously established the landscape of mitochondrial DNA (mtDNA) mutations in 23 subtypes of pediatric malignancies, characterized mtDNA mutation profiles among these subtypes, and provided statistically significant evidence for a contributory role of mtDNA mutations to pediatric malignancies. METHODS: To further delineate the spectrum of mtDNA mutations in pediatric central nervous system (CNS) tumors, we analyzed 545 tumor-normal paired whole-genome sequencing datasets from the Children's Brain Tumor Tissue Consortium. RESULTS: Germline mtDNA variants were used to determine the haplogroup, and maternal ancestry, which was not significantly different among tumor types. Among 166 (30.5%) tumors we detected 220 somatic mtDNA mutations, primarily missense mutations (36.8%), as well as 22 loss-of-function mutations. Different pediatric CNS tumor subtypes had distinct mtDNA mutation profiles. The number of mtDNA mutations per tumor ranged from 0.20 (dysembryoplastic neuroepithelial tumor [DNET]) to 0.75 (meningiomas). The average heteroplasmy was 10.7%, ranging from 4.6% in atypical teratoid/rhabdoid tumor (AT/RT) to 26% in diffuse intrinsic pontine glioma. High-grade gliomas had a significant higher number of mtDNA mutations per sample than low-grade gliomas (0.6 vs 0.27) (P = .004), with almost twice as many missense mtDNA mutations per sample (0.24 vs 0.11), and higher average heteroplasmy levels (16% vs 10%). Recurrent mtDNA mutations may represent hotspots which may serve as biologic markers of disease. CONCLUSIONS: Our findings demonstrate varying contributions of mtDNA mutations in different subtypes of CNS tumors. Sequencing the mtDNA genome may ultimately be used to characterize CNS tumors at diagnosis and monitor disease progression.

4.
Cell Rep Med ; 2(4): 100250, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33948580

RESUMO

Genome-wide association studies (GWASs) are instrumental in identifying loci harboring common single-nucleotide variants (SNVs) that affect human traits and diseases. GWAS hits emerge in clusters, but the focus is often on the most significant hit in each trait- or disease-associated locus. The remaining hits represent SNVs in linkage disequilibrium (LD) and are considered redundant and thus frequently marginally reported or exploited. Here, we interrogate the value of integrating the full set of GWAS hits in a locus repeatedly associated with cardiac conduction traits and arrhythmia, SCN5A-SCN10A. Our analysis reveals 5 common 7-SNV haplotypes (Hap1-5) with 2 combinations associated with life-threatening arrhythmia-Brugada syndrome (the risk Hap1/1 and protective Hap2/3 genotypes). Hap1 and Hap2 share 3 SNVs; thus, this analysis suggests that assuming redundancy among clustered GWAS hits can lead to confounding disease-risk associations and supports the need to deconstruct GWAS data in the context of haplotype composition.


Assuntos
Síndrome de Brugada/genética , Predisposição Genética para Doença/genética , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Adulto , Síndrome de Brugada/diagnóstico , Testes Genéticos/métodos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Haplótipos/genética , Humanos , Pessoa de Meia-Idade , Fenótipo , Locos de Características Quantitativas/genética
5.
Hum Mutat ; 41(12): 2028-2057, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32906214

RESUMO

Mitochondrial DNA (mtDNA) variant pathogenicity interpretation has special considerations given unique features of the mtDNA genome, including maternal inheritance, variant heteroplasmy, threshold effect, absence of splicing, and contextual effects of haplogroups. Currently, there are insufficient standardized criteria for mtDNA variant assessment, which leads to inconsistencies in clinical variant pathogenicity reporting. An international working group of mtDNA experts was assembled within the Mitochondrial Disease Sequence Data Resource Consortium and obtained Expert Panel status from ClinGen. This group reviewed the 2015 American College of Medical Genetics and Association of Molecular Pathology standards and guidelines that are widely used for clinical interpretation of DNA sequence variants and provided further specifications for additional and specific guidance related to mtDNA variant classification. These Expert Panel consensus specifications allow for consistent consideration of the unique aspects of the mtDNA genome that directly influence variant assessment, including addressing mtDNA genome composition and structure, haplogroups and phylogeny, maternal inheritance, heteroplasmy, and functional analyses unique to mtDNA, as well as specifications for utilization of mtDNA genomic databases and computational algorithms.


Assuntos
DNA Mitocondrial/genética , Variação Genética , Guias como Assunto , Sociedades Científicas , Bases de Dados Genéticas , Árvores de Decisões , Haplótipos/genética , Humanos , Fenótipo , Padrões de Referência
6.
Sci Rep ; 10(1): 6632, 2020 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-32313136

RESUMO

Lamin A/C (LMNA) gene mutations are a known cause of familial dilated cardiomyopathy, but the precise mechanisms triggering disease progression remain unknown. We hypothesize that analysis of differentially expressed genes (DEGs) throughout the course of Lmna knockout (Lmna-/-)-induced cardiomyopathy may reveal novel Lmna-mediated alterations of signaling pathways leading to dilated cardiomyopathy. Although Lmna was the only DEG down-regulated at 1 week of age, we identified 730 and 1004 DEGs in Lmna-/- mice at 2 weeks and 1 month of age, respectively. At 2 weeks, Lmna-/- mice demonstrated both down- and up-regulation of the key genes involving cell cycle control, mitochondrial dysfunction, and oxidative phosphorylation, as well as down-regulated genes governing DNA damage repair and up-regulated genes involved in oxidative stress response, cell survival, and cardiac hypertrophy. At 1 month, the down-regulated genes included those involved in oxidative phosphorylation, mitochondrial dysfunction, nutrient metabolism, cardiac ß-adrenergic signaling, action potential generation, and cell survival. We also found 96 overlapping DEGs at both ages involved in oxidative phosphorylation, mitochondrial function, and calcium signaling. Impaired oxidative phosphorylation was observed at early disease stage, even before the appearance of disease phenotypes, and worsened with disease progression, suggesting its importance in the pathogenesis and progression of LMNA cardiomyopathy. Reduction of oxidative stress might therefore prevent or delay the development from Lmna mutation to LMNA cardiomyopathy.


Assuntos
Cardiomiopatia Dilatada/genética , Ciclo Celular/genética , Reparo do DNA , Lamina Tipo A/genética , Mitocôndrias/metabolismo , Potenciais de Ação/fisiologia , Animais , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Sobrevivência Celular , Dano ao DNA , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Lamina Tipo A/deficiência , Lamina Tipo A/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/patologia , Fosforilação Oxidativa , Estresse Oxidativo , Transdução de Sinais , Estresse Fisiológico/genética
7.
Cell Rep ; 31(3): 107532, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32320655

RESUMO

Cisplatin is an antineoplastic drug administered at suboptimal and intermittent doses to avoid life-threatening effects. Although this regimen shortly improves symptoms in the short term, it also leads to more malignant disease in the long term. We describe a multilayered analysis ranging from chromatin to translation-integrating chromatin immunoprecipitation sequencing (ChIP-seq), global run-on sequencing (GRO-seq), RNA sequencing (RNA-seq), and ribosome profiling-to understand how cisplatin confers (pre)malignant features by using a well-established ovarian cancer model of cisplatin exposure. This approach allows us to segregate the human transcriptome into gene modules representing distinct regulatory principles and to characterize that the most cisplatin-disrupted modules are associated with underlying events of super-enhancer plasticity. These events arise when cancer cells initiate without ultimately ending the program of drug-stimulated death. Using a PageRank-based algorithm, we predict super-enhancer regulator ISL1 as a driver of this plasticity and validate this prediction by using CRISPR/dCas9-KRAB inhibition (CRISPRi) and CRISPR/dCas9-VP64 activation (CRISPRa) tools. Together, we propose that cisplatin reprograms cancer cells when inducing them to undergo near-to-death experiences.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Elementos Facilitadores Genéticos/genética , Neoplasias/genética , Transcrição Gênica/genética , Antineoplásicos/farmacologia , Cisplatino/farmacologia , Humanos
8.
Mitochondrion ; 51: 97-103, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31972374

RESUMO

The mitochondrial genome is small, 16.5 kb, and yet complex to study due to an abundance of mitochondria in any given cell or tissue. Mitochondrial DNA (mtDNA) mutations have been previously described in cancer, many of which were detected at low heteroplasmy. In this study we enriched the mitochondrial genome in primary pediatric tumors for detection of mtDNA variants. We completed mtDNA enrichment using REPLI-g, Agilent SureSelect, and long-range polymerase chain reaction (LRPCR) followed by next generation sequencing (NGS) on Illumina platforms. Primary tumor and germline genomic DNA from a variety of pediatric central nervous system (CNS) and extra-CNS solid tumors were analyzed by the three different methods. Although all three methods performed equally well for detecting variants at high heteroplasmy or homoplasmy, only LRPCR and SureSelect-based enrichment methods provided consistent results for variants that were present at less than five percent heteroplasmy. We then applied both LRPCR and SureSelect to three successive samples from a patient with multiply-recurrent gliofibroma and detected a low-level novel mutation as well as a change in heteroplasmy levels of a synonymous variant that was correlated with progression of disease. IMPLICATION: This study demonstrates that LRPCR and SureSelect enrichment, but not REPLI-g, followed by NGS are accurate methods for studying the mtDNA variations at low heteroplasmy, which may be applied to studying mtDNA mutations in cancer.


Assuntos
Neoplasias do Sistema Nervoso Central/genética , Variação Genética/genética , Genoma Mitocondrial/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Reação em Cadeia da Polimerase/métodos , Sistema Nervoso Central/patologia , DNA Mitocondrial/genética , Heteroplasmia/genética , Humanos , Mitocôndrias/genética
9.
Nat Genet ; 51(12): 1691-1701, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31740836

RESUMO

In the mammalian genome, the clustered protocadherin (cPCDH) locus provides a paradigm for stochastic gene expression with the potential to generate a unique cPCDH combination in every neuron. Here we report a chromatin-based mechanism that emerges during the transition from the naive to the primed states of cell pluripotency and reduces, by orders of magnitude, the combinatorial potential in the human cPCDH locus. This mechanism selectively increases the frequency of stochastic selection of a small subset of cPCDH genes after neuronal differentiation in monolayers, 10-month-old cortical organoids and engrafted cells in the spinal cords of rats. Signs of these frequent selections can be observed in the brain throughout fetal development and disappear after birth, except in conditions of delayed maturation such as Down's syndrome. We therefore propose that a pattern of limited cPCDH-gene expression diversity is maintained while human neurons still retain fetal-like levels of maturation.


Assuntos
Caderinas/genética , Cromatina/genética , Síndrome de Down/patologia , Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/fisiologia , Adulto , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Encéfalo/citologia , Encéfalo/embriologia , Diferenciação Celular , Linhagem Celular , Síndrome de Down/genética , Regulação da Expressão Gênica , Histonas/genética , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Camundongos , Pessoa de Meia-Idade , Neurônios/citologia , Regiões Promotoras Genéticas , Ratos , Análise de Célula Única , Medula Espinal/citologia , Medula Espinal/transplante , Transplante Heterólogo
10.
Cancer Res ; 79(7): 1318-1330, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30709931

RESUMO

Little is known about the spectrum of mitochondrial DNA (mtDNA) mutations across pediatric malignancies. In this study, we analyzed matched tumor and normal whole genome sequencing data from 616 pediatric patients with hematopoietic malignancies, solid tumors, and brain tumors. We identified 391 mtDNA mutations in 284 tumors including 45 loss-of-function mutations, which clustered at four statistically significant hotspots in MT-COX3, MT-ND4, and MT-ND5, and at a mutation hotspot in MT-tRNA-MET. A skewed ratio (4.83) of nonsynonymous versus synonymous (dN/dS) mtDNA mutations with high statistical significance was identified on the basis of Monte Carlo simulations in the tumors. In comparison, opposite ratios of 0.44 and 0.93 were observed in 616 matched normal tissues and in 249 blood samples from children without cancer, respectively. mtDNA mutations varied by cancer type and mtDNA haplogroup. Collectively, these results suggest that deleterious mtDNA mutations play a role in the development and progression of pediatric cancers. SIGNIFICANCE: This pan-cancer mtDNA study establishes the landscape of germline and tumor mtDNA mutations and identifies hotspots of tumor mtDNA mutations to pinpoint key mitochondrial functions in pediatric malignancies.


Assuntos
DNA Mitocondrial/genética , Mutação , Neoplasias/genética , Estudos de Casos e Controles , Criança , Feminino , Genoma Mitocondrial , Humanos , Masculino
11.
Nat Neurosci ; 21(10): 1493, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30097659

RESUMO

In the version of this article initially published, a Supplementary Fig. 6f was cited in the last paragraph of the Results. No such panel exists; the citation has been deleted. The error has been corrected in the HTML and PDF versions of the article.

12.
Nat Neurosci ; 21(7): 1004-1014, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950670

RESUMO

A localized transcriptome at the synapse facilitates synapse-, stimulus- and transcript-specific local protein synthesis in response to neuronal activity. While enzyme-mediated mRNA modifications are known to regulate cellular mRNA turnover, the role of these modifications in regulating synaptic RNA has not been studied. We established low-input m6A-sequencing of synaptosomal RNA to determine the chemically modified local transcriptome in healthy adult mouse forebrains and identified 4,469 selectively enriched m6A sites in 2,921 genes as the synaptic m6A epitranscriptome (SME). The SME is functionally enriched in synthesis and modulation of tripartite synapses and in pathways implicated in neurodevelopmental and neuropsychiatric diseases. Interrupting m6A-mediated regulation via knockdown of readers in hippocampal neurons altered expression of SME member Apc, resulting in synaptic dysfunction including immature spine morphology and dampened excitatory synaptic transmission concomitant with decreased clusters of postsynaptic density-95 (PSD-95) and decreased surface expression of AMPA receptor subunit GluA1. Our findings indicate that chemical modifications of synaptic mRNAs critically contribute to synaptic function.


Assuntos
Adenosina/análogos & derivados , Prosencéfalo/metabolismo , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Adenosina/genética , Adenosina/metabolismo , Animais , Camundongos , Transcriptoma
13.
Cell ; 173(4): 1014-1030.e17, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29727661

RESUMO

Tools to understand how the spliceosome functions in vivo have lagged behind advances in the structural biology of the spliceosome. Here, methods are described to globally profile spliceosome-bound pre-mRNA, intermediates, and spliced mRNA at nucleotide resolution. These tools are applied to three yeast species that span 600 million years of evolution. The sensitivity of the approach enables the detection of canonical and non-canonical events, including interrupted, recursive, and nested splicing. This application of statistical modeling uncovers independent roles for the size and position of the intron and the number of introns per transcript in substrate progression through the two catalytic stages. These include species-specific inputs suggestive of spliceosome-transcriptome coevolution. Further investigations reveal the ATP-dependent discard of numerous endogenous substrates after spliceosome assembly in vivo and connect this discard to intron retention, a form of splicing regulation. Spliceosome profiling is a quantitative, generalizable global technology used to investigate an RNP central to eukaryotic gene expression.


Assuntos
Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Teorema de Bayes , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Imunoprecipitação , Precursores de RNA/metabolismo , Splicing de RNA , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Telomerase/genética , Telomerase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
14.
Nature ; 556(7702): 510-514, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29670286

RESUMO

Enhancers for embryonic stem (ES) cell-expressed genes and lineage-determining factors are characterized by conventional marks of enhancer activation in ES cells1-3, but it remains unclear whether enhancers destined to regulate cell-type-restricted transcription units might also have distinct signatures in ES cells. Here we show that cell-type-restricted enhancers are 'premarked' and activated as transcription units by the binding of one or two ES cell transcription factors, although they do not exhibit traditional enhancer epigenetic marks in ES cells, thus uncovering the initial temporal origins of cell-type-restricted enhancers. This premarking is required for future cell-type-restricted enhancer activity in the differentiated cells, with the strength of the ES cell signature being functionally important for the subsequent robustness of cell-type-restricted enhancer activation. We have experimentally validated this model in macrophage-restricted enhancers and neural precursor cell (NPC)-restricted enhancers using ES cell-derived macrophages or NPCs, edited to contain specific ES cell transcription factor motif deletions. DNA hydroxyl-methylation of enhancers in ES cells, determined by ES cell transcription factors, may serve as a potential molecular memory for subsequent enhancer activation in mature macrophages. These findings suggest that the massive repertoire of cell-type-restricted enhancers are essentially hierarchically and obligatorily premarked by binding of a defining ES cell transcription factor in ES cells, dictating the robustness of enhancer activation in mature cells.


Assuntos
Diferenciação Celular/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica/genética , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição/metabolismo , Animais , Epigênese Genética , Feminino , Macrófagos/citologia , Macrófagos/metabolismo , Camundongos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Especificidade de Órgãos , Células-Tronco Pluripotentes/citologia , Reprodutibilidade dos Testes
15.
Proc Natl Acad Sci U S A ; 115(2): E244-E252, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29263096

RESUMO

Hematopoietic stem cells (HSCs) maintain a quiescent state during homeostasis, but with acute infection, they exit the quiescent state to increase the output of immune cells, the so-called "emergency hematopoiesis." However, HSCs' response to severe infection during septic shock and the pathological impact remain poorly elucidated. Here, we report that the histone demethylase KDM1A/LSD1, serving as a critical regulator of mammalian hematopoiesis, is a negative regulator of the response to inflammation in HSCs during endotoxic shock typically observed during acute bacterial or viral infection. Inflammation-induced LSD1 deficiency results in an acute expansion of a pathological population of hyperproliferative and hyperinflammatory myeloid progenitors, resulting in a septic shock phenotype and acute death. Unexpectedly, in vivo administration of bacterial lipopolysaccharide (LPS) to wild-type mice results in acute suppression of LSD1 in HSCs with a septic shock phenotype that resembles that observed following induced deletion of LSD1 The suppression of LSD1 in HSCs is caused, at least in large part, by a cohort of inflammation-induced microRNAs. Significantly, reconstitution of mice with bone marrow progenitor cells expressing inhibitors of these inflammation-induced microRNAs blocked the suppression of LSD1 in vivo following acute LPS administration and prevented mortality from endotoxic shock. Our results indicate that LSD1 activators or miRNA antagonists could serve as a therapeutic approach for life-threatening septic shock characterized by dysfunction of HSCs.


Assuntos
Células-Tronco Hematopoéticas/fisiologia , Histona Desmetilases/metabolismo , Homeostase/fisiologia , Choque Séptico/patologia , Animais , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica , Histona Desmetilases/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , MicroRNAs
16.
Nat Commun ; 8(1): 241, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28808226

RESUMO

Leukemia cells rely on two nucleotide biosynthetic pathways, de novo and salvage, to produce dNTPs for DNA replication. Here, using metabolomic, proteomic, and phosphoproteomic approaches, we show that inhibition of the replication stress sensing kinase ataxia telangiectasia and Rad3-related protein (ATR) reduces the output of both de novo and salvage pathways by regulating the activity of their respective rate-limiting enzymes, ribonucleotide reductase (RNR) and deoxycytidine kinase (dCK), via distinct molecular mechanisms. Quantification of nucleotide biosynthesis in ATR-inhibited acute lymphoblastic leukemia (ALL) cells reveals substantial remaining de novo and salvage activities, and could not eliminate the disease in vivo. However, targeting these remaining activities with RNR and dCK inhibitors triggers lethal replication stress in vitro and long-term disease-free survival in mice with B-ALL, without detectable toxicity. Thus the functional interplay between alternative nucleotide biosynthetic routes and ATR provides therapeutic opportunities in leukemia and potentially other cancers.Leukemic cells depend on the nucleotide synthesis pathway to proliferate. Here the authors use metabolomics and proteomics to show that inhibition of ATR reduced the activity of these pathways thus providing a valuable therapeutic target in leukemia.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Nucleotídeos/biossíntese , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Vias Biossintéticas , Replicação do DNA , Desoxicitidina Quinase/genética , Desoxicitidina Quinase/metabolismo , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo
17.
Proc Natl Acad Sci U S A ; 114(15): E3081-E3090, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28348214

RESUMO

The earliest event in Xenopus development is the dorsal accumulation of nuclear ß-catenin under the influence of cytoplasmic determinants displaced by fertilization. In this study, a genome-wide approach was used to examine transcription of the 43,673 genes annotated in the Xenopus laevis genome under a variety of conditions that inhibit or promote formation of the Spemann organizer signaling center. Loss of function of ß-catenin with antisense morpholinos reproducibly reduced the expression of 247 mRNAs at gastrula stage. Interestingly, only 123 ß-catenin targets were enriched on the dorsal side and defined an early dorsal ß-catenin gene signature. These genes included several previously unrecognized Spemann organizer components. Surprisingly, only 3 of these 123 genes overlapped with the late Wnt signature recently defined by two other groups using inhibition by Dkk1 mRNA or Wnt8 morpholinos, which indicates that the effects of ß-catenin/Wnt signaling in early development are exquisitely regulated by stage-dependent mechanisms. We analyzed transcriptome responses to a number of treatments in a total of 46 RNA-seq libraries. These treatments included, in addition to ß-catenin depletion, regenerating dorsal and ventral half-embryos, lithium chloride treatment, and the overexpression of Wnt8, Siamois, and Cerberus mRNAs. Only some of the early dorsal ß-catenin signature genes were activated at blastula whereas others required the induction of endomesoderm, as indicated by their inhibition by Cerberus overexpression. These comprehensive data provide a rich resource for analyzing how the dorsal and ventral regions of the embryo communicate with each other in a self-organizing vertebrate model embryo.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Organizadores Embrionários/fisiologia , Transcriptoma , Proteínas de Xenopus/metabolismo , Xenopus laevis/genética , Sequência de Aminoácidos , Animais , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteína Nodal/genética , Proteína Nodal/metabolismo , Homologia de Sequência , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
18.
Proc Natl Acad Sci U S A ; 113(47): 13408-13413, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27810956

RESUMO

As a key component of the vertebrate neuroendocrine system, the pituitary gland relies on the progressive and coordinated development of distinct hormone-producing cell types and an invading vascular network. The molecular mechanisms that drive formation of the pituitary vasculature, which is necessary for regulated synthesis and secretion of hormones that maintain homeostasis, metabolism, and endocrine function, remain poorly understood. Here, we report that expression of integrin ß1 in embryonic pituitary epithelial cells is required for angiogenesis in the developing mouse pituitary gland. Deletion of pituitary epithelial integrin ß1 before the onset of angiogenesis resulted in failure of invading endothelial cells to recruit pericytes efficiently, whereas deletion later in embryogenesis led to decreased vascular density and lumen formation. In both cases, lack of epithelial integrin ß1 was associated with a complete absence of vasculature in the pituitary gland at birth. Within pituitary epithelial cells, integrin ß1 directs a large transcriptional program that includes components of the extracellular matrix and associated signaling factors that are linked to the observed non-cell-autonomous effects on angiogenesis. We conclude that epithelial integrin ß1 functions as a critical and canonical regulator of developmental angiogenesis in the pituitary gland, thus providing insight into the long-standing systems biology conundrum of how vascular invasion is coordinated with tissue development.


Assuntos
Desenvolvimento Embrionário , Células Epiteliais/metabolismo , Integrina beta1/metabolismo , Neovascularização Fisiológica , Hipófise/citologia , Hipófise/embriologia , Animais , Animais Recém-Nascidos , Contagem de Células , Diferenciação Celular , Desenvolvimento Embrionário/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Matriz Extracelular/metabolismo , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Marcação de Genes , Integrases/metabolismo , Camundongos , Neovascularização Fisiológica/genética , Fatores de Transcrição Box Pareados/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Fenótipo , Hipófise/metabolismo , Análise de Sequência de RNA , Fatores de Tempo , Fator C de Crescimento do Endotélio Vascular/metabolismo
19.
Nat Neurosci ; 18(9): 1256-64, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26214369

RESUMO

We found that a neuron-specific isoform of LSD1, LSD1n, which results from an alternative splicing event, acquires a new substrate specificity, targeting histone H4 Lys20 methylation, both in vitro and in vivo. Selective genetic ablation of LSD1n led to deficits in spatial learning and memory, revealing the functional importance of LSD1n in neuronal activity-regulated transcription that is necessary for long-term memory formation. LSD1n occupied neuronal gene enhancers, promoters and transcribed coding regions, and was required for transcription initiation and elongation steps in response to neuronal activity, indicating the crucial role of H4K20 methylation in coordinating gene transcription with neuronal function. Our results indicate that this alternative splicing of LSD1 in neurons, which was associated with altered substrate specificity, serves as a mechanism acquired by neurons to achieve more precise control of gene expression in the complex processes underlying learning and memory.


Assuntos
Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Memória de Longo Prazo/fisiologia , Transcrição Gênica/fisiologia , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Feminino , Deleção de Genes , Masculino , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
20.
Mol Cell ; 59(2): 188-202, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26166704

RESUMO

Enhancers instruct spatio-temporally specific gene expression in a manner tightly linked to higher-order chromatin architecture. Critical chromatin architectural regulators condensin I and condensin II play non-redundant roles controlling mitotic chromosomes. But the chromosomal locations of condensins and their functional roles in interphase are poorly understood. Here we report that both condensin complexes exhibit an unexpected, dramatic estrogen-induced recruitment to estrogen receptor α (ER-α)-bound eRNA(+) active enhancers in interphase breast cancer cells, exhibiting non-canonical interaction with ER-α via its DNA-binding domain (DBD). Condensins positively regulate ligand-dependent enhancer activation at least in part by recruiting an E3 ubiquitin ligase, HECTD1, to modulate the binding of enhancer-associated coactivators/corepressors, including p300 and RIP140, permitting full eRNA transcription, formation of enhancer:promoter looping, and the resultant coding gene activation. Collectively, our results reveal an important, unanticipated transcriptional role of interphase condensins in modulating estrogen-regulated enhancer activation and coding gene transcriptional program.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Sequência de Bases , Sítios de Ligação , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Cromatina/genética , Cromatina/metabolismo , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Estradiol/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Interfase , Células MCF-7 , Modelos Biológicos , Dados de Sequência Molecular , Complexos Multiproteicos/antagonistas & inibidores , Complexos Multiproteicos/genética , Proteínas Nucleares/metabolismo , Proteína 1 de Interação com Receptor Nuclear , Regiões Promotoras Genéticas , Ligação Proteica , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...