Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 13(18): 8639-8647, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33942037

RESUMO

The influence of ligands on the low frequency vibration of cadmium selenide colloidal nanoplatelets of different thicknesses is investigated using resonant low frequency Raman scattering. The strong vibration frequency shifts induced by ligand modifications as well as sharp spectral linewidths make low frequency Raman scattering a tool of choice to follow ligand exchange as well as the nano-mechanical properties of the NPLs, as evidenced by a carboxylate to thiolate exchange study. Apart from their molecular weight, the nature of the ligands, such as the sulfur to metal bond of thiols, induces a modification of the NPLs as a whole, increasing the thickness by one monolayer. Moreover, as the weight of the ligands increases, the discrepancy between the mass-load model and the experimental measurements increase. These effects are all the more important when the number of layers is small and can only be explained by a modification of the longitudinal sound velocity. This modification takes its origin in a change of the lattice structure of the NPLs, that reflects on their elastic properties. These nanobalances are finally used to characterize ligand affinity with the surface using binary thiol mixtures, illustrating the potential of low frequency Raman scattering to finely characterize nanocrystal surfaces.

2.
ACS Nano ; 14(4): 4395-4404, 2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167742

RESUMO

We report the synthesis of long narrow gold nanocrystals and the study of their vibrational dynamics using inelastic light-scattering measurements. Rich experimental spectra are obtained for monodomain gold nanorods and pentagonal twinned bipyramids. Their assignment involves diameter-dependent nontotally symmetric vibrations which are modeled in the framework of continuum elasticity by taking into account simultaneously the size, shape, and crystallinity of the nanocrystals. Light scattering by vibrations with angular momenta larger than 2 is reported. It is shown to increase with the ratio of the nanocrystals diameter to the interparticle separation. It originates from the plasmonic coupling due to the self-assembly of the nanocrystals after deposition.

3.
Nano Lett ; 18(6): 3800-3806, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29715427

RESUMO

The acoustic vibrations of single monomers and dimers of gold nanoparticles were investigated by measuring for the first time their ultralow-frequency micro-Raman scattering. This experiment provides access not only to the frequency of the detected vibrational modes but also to their damping rate, which is obscured by inhomogeneous effects in measurements on ensembles of nano-objects. This allows a detailed analysis of the mechanical coupling occurring between two close nanoparticles (mediated by the polymer surrounding them) in the dimer case. Such coupling induces the hybridization of the vibrational modes of each nanoparticle, leading to the appearance in the Raman spectra of two ultralow-frequency modes corresponding to the out-of-phase longitudinal and transverse (with respect to the dimer axis) quasi-translations of the nanoparticles. Additionally, it is also shown to shift the frequency of the quadrupolar modes of the nanoparticles. Experimental results are interpreted using finite-element simulations, which enable the unambiguous identification of the detected modes and despite the simplifications made lead to a reasonable reproduction of their measured frequencies and quality factors. The demonstrated feasibility of low-frequency Raman scattering experiments on single nano-objects opens up new possibilities to improve the understanding of nanoscale vibrations with this technique being complementary with single nano-object time-resolved spectroscopy as it gives access to different vibrational modes.

4.
Nanoscale ; 10(4): 2154-2161, 2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29327007

RESUMO

Studies of the mechanical contact between nanometer-scale particles provide fundamental insights into the mechanical properties of materials and the validity of contact laws at the nanoscale which are still under debate for contact surfaces approaching atomic dimensions. Using in situ Brillouin light scattering under high pressure, we show that effective medium theories successfully predict the macroscopic sound velocities in nanopowders if one takes into account the cementation of the contacts Our measurements suggest the relevance of the continuum approach and effective medium theories to describe the contact between nanoparticles of diameters as small as 4 nm, i.e. with radii of contact of a few angstroms. In particular, we demonstrate that the mechanical properties of nanopowders strongly depend on the surface state of the nanoparticles. The presence of molecular adsorbates modifies significantly the contact laws.

5.
Nanoscale ; 9(19): 6551-6557, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28470265

RESUMO

Resonant acoustic modes from ultrathin CdS colloidal nanoplatelets (NPLs) are probed under high pressure using low frequency Raman spectroscopy. In particular we focus on the characterization of the recently evidenced mass load effect that is responsible for a significant downshift of the NPL breathing frequency due to the inert mass of organic ligands. We show that a key parameter in the observation of the mass effect is whether the surrounding medium is able to support THz acoustic wave propagation, at a frequency close to that of the inorganic vibrating core. At low pressures, surface organic molecules show a single particle-like behavior and a strong mass effect is observed. Upon pressure loading the ligands are compacted together with the surrounding medium and slowly turned into a solid medium that supports THz acoustic phonons. We observe a continuous transition towards a fully embedded NPL with a frequency close to that of a freely vibrating slab and a progressive loss of the mass effect. The quality factor of the detected vibration significantly decreases as a result of the appearance of a "phonon-like" behavior of the environment at the origin of damping and energy dissipation.

6.
Nanoscale ; 8(27): 13251-6, 2016 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-27334524

RESUMO

Resonant acoustic modes of ultrathin CdS and CdSe colloidal nanoplatelets (NPLs) with varying thicknesses were probed using low frequency Raman scattering. The spectra are dominated by an intense band ascribed to the thickness breathing mode of the 2D nanostructures. The measured Raman frequencies show strong deviations with respect to the values expected for simple bare plates, all the more so as the thickness is reduced. The deviation is shown to arise from the additional mass of the organic ligands that are bound to the free surfaces of the nanoplatelets. The calculated eigen frequencies of vibrating platelets weighed down by the mass of the organic ligands are in very good agreement with the observed experimental behaviours. This finding opens up a new possibility of nanomechanical sensing such as nanobalances.

7.
Opt Express ; 23(9): 12423-33, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969328

RESUMO

Compared to rare-earth doped glasses, bismuth-doped glasses hold promise for super-broadband near-infrared (NIR) photoemission and potential applications in optical amplification. However, optically active bismuth centers are extremely sensitive to the properties of the surrounding matrix, and also to processing conditions. This is strongly complicating the exploitation of this class of materials, because functional devices require a very delicate adjustment of the redox state of the bismuth species, and its distribution throughout the bulk of the material. It also largely limits some of the conventional processing routes for glass fiber, which start from gas phase deposition and may require very high processing temperature. Here, we investigate the influence of melting time and alkali addition on bismuth-related NIR photoluminescence from melt-derived germanate glasses. We show that the effect of melting time on bismuth-related absorption and NIR photoemission is primarily through bismuth volatilization. Adding alkali oxides as fluxing agents, the melt viscosity can be lowered to reduce either the glass melting temperature, or the melting time, or both. At the same time, however, alkali addition also leads to increasing mean-field basicity, what may reduce the intensity of bismuth-related NIR emission. Preferentially using Li2O over Na2O or K2O presents the best trade-off between those above factors, because its local effect may be adverse to the generally assumed trend of the negative influence of more basic matrix composition. This observation provides an important guideline for the design of melt-derived Bi-doped glasses with efficient NIR photoemission and high optical homogeneity.

8.
Nanoscale ; 5(20): 9523-7, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-24056754

RESUMO

We study the influence of the size and nanocrystallinity of dodecanethiol-coated gold nanocrystals (NCs) on the stiffness of 3D self-assembled NC superlattices (called supracrystals). Using single domain and polycrystalline NCs as building blocks for supracrystals, it is shown that the stiffness of supracrystals can be tuned upon change in relative amounts of single and polycrystalline NCs.

9.
Nano Lett ; 12(10): 5292-8, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22989345

RESUMO

Spontaneous separation of single from polycrystalline 5 nm gold nanocrystals (NCs) is observed in colloidal solution. This segregation takes place upon self-assembling of single crystalline NCs at the air-solvent interface and in precipitated superlattices. Polycrystalline NCs are observed to remain in the suspension. Transmission electron microscopy analysis of the size distribution of NCs issued from the different populations indicates that the NC size does not change from each other, excluding therefore any size segregation in this process. Using both low-frequency Raman scattering and X-ray diffraction provides reliable characterization of nanocrystallinity for each population of NCs, thus confirming the crystallinity segregation. The single crystalline NCs are found by electron diffraction to self-assemble into close-packed superlattices with long-range translational and orientational ordering, while polycrystalline NCs behave like spheres with no preferential orientation. The face-to-face orientational ordering, which is only observed for single crystalline NCs, supports the relevance of the specific crystallinity-related morphologies of these NCs in their better ability to self-assemble. Exploiting this spontaneous segregation would open up a simple alternative to other demanding routes for controlling crystallinity of nanocrystals and optimizing their properties for potential applications.

10.
Phys Chem Chem Phys ; 14(12): 4125-32, 2012 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-22337122

RESUMO

Solutions of LiCl and of NaCl in ultrapure water were studied through Rayleigh/Brillouin scattering as a function of the concentration (molarity, M) of dissolved salt from 0.2 M to extremely low concentration (2 × 10(-17) M). The Landau-Placzek ratio, R/B, of the Rayleigh scattering intensity over the total Brillouin was measured thanks to the dynamically controlled stability of the used Fabry-Perot interferometer. It was observed that the R/B ratio follows two stages as a function of increasing dilution rate: after a strong decrease between 0.2 M and 2 × 10(-5) M, it increases to reach a maximum between 10(-9) M and 10(-16) M. The first stage corresponds to the decrease of the Rayleigh scattering by the ion concentration fluctuations with the decrease of salt concentration. The second stage, at lower concentrations, is consistent with the increase of the Rayleigh scattering by long-lived sub-microscopic bubbles with the decrease of ion concentration. The origin of these sub-microscopic bubbles is the shaking of the solutions, which was carried out after each centesimal dilution. The very long lifetime of the sub-microscopic bubbles and the effects of aging originate in the electric charge of bubbles. The increase of R/B with the decrease of the low salt concentration corresponds to the increase of the sub-microscopic bubble size with the decrease of concentration, which is imposed by the bubble stability due to the covering of the surface bubble by negative ions.


Assuntos
Cloreto de Lítio/química , Cloreto de Sódio/química , Água/química , Soluções , Propriedades de Superfície
11.
J Am Chem Soc ; 134(8): 3714-9, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22329348

RESUMO

Natural systems give the route to design periodic arrangements with mesoscopic architecture using individual nanocrystals as building blocks forming colloidal crystals or supracrystals. The collective properties of such supracrystals are one of the main driving forces in materials research for the 21st century with potential applications in electronics or biomedical environments. Here we describe two simultaneous supracrystal growth processes from gold nanocrystal suspension, taking place in solution and at the air-liquid interface. Furthermore, the growth processes involve the crystallinity selection of nanocrystals and induce marked changes in the supracrystal mechanical properties.


Assuntos
Coloides/química , Ouro/química , Nanopartículas Metálicas/química , Tamanho da Partícula , Propriedades de Superfície
12.
Inorg Chem ; 49(20): 9470-8, 2010 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-20845921

RESUMO

Experimental and theoretical studies have been performed to demonstrate the high performance of the novel piezoelectric material GaAsO(4). Hydrothermally grown single crystals of α-quartz phase GaAsO(4) were studied by Brillouin spectroscopy to determine elastic constants. Experimentally obtained values of C(11), C(66), C(33), C(44), C(14) and C(12) are 59.32, 19.12, 103.54, 30.70, 1.7, and 21.1 GPa, respectively. Elastic and piezoelectric tensors were also calculated by a first principles method in this work, leading to a very good agreement with experimental results and confirming the values of elastic components obtained indirectly such as C(14) and the negligible piezoelectric correction for C(11). The thermal behavior of the elastic constant corresponding to the [100] longitudinal L mode (C(11)) was studied up to 1137 K to estimate potential piezoelectric performance. It was found that the thermal behavior is linear up to 1273 K which is just below the thermal decomposition temperature of 1303 K. High thermal stability can be linked to the higher polarizability of large cations Ga and As because of neighboring oxygen atoms. On the basis of thermal behavior, GaAsO(4) is a promising material for high temperature piezoelectric applications.

13.
ACS Nano ; 4(6): 3489-97, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20565142

RESUMO

Au nanocrystals (NCs) with different crystalline structures and related morphologies are unselectively synthesized using an organometallic route. The acoustic vibrations of these NCs are studied by plasmon mediated low-frequency Raman scattering (LFRS). A splitting of the quadrupolar vibration mode is pointed out in the LFRS spectrum. Comparison of the measured frequencies with calculations and careful examination of the NCs morphologies by transmission electron microscopy ascertain this splitting as being an effect of crystallinity. The excitation dependence of the LFRS spectra is interpreted by the shape-selection of the NCs via plasmon-vibration coupling. These results give new insights into the crystallinity influence on both the vibrations of the NCs and their coupling with plasmons and demonstrate the relevance of elastic anisotropy in monodomain NCs.


Assuntos
Cristalização/métodos , Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Nanotecnologia/métodos , Análise Espectral Raman/métodos , Ressonância de Plasmônio de Superfície/métodos , Anisotropia , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Refratometria , Propriedades de Superfície
14.
Rev Sci Instrum ; 79(8): 083902, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19044359

RESUMO

The energy scale of a triple-axis x-ray spectrometer with meV energy resolution based on perfect silicon crystal optics is calibrated, utilizing the most recent determination of the silicon lattice parameter and its thermal expansion coefficient and recording the dispersion of longitudinal acoustic and optical phonons in a diamond single crystal and the molecular vibration mode in liquid nitrogen. Comparison of the x-ray results with previous inelastic neutron and Raman scattering results as well as with ab initio phonon dispersion calculations yields an overall agreement better than 2%.


Assuntos
Espectrofotometria/instrumentação , Calibragem , Cristalização , Diamante/química , Desenho de Equipamento , Interferometria , Nitrogênio/química , Óptica e Fotônica , Fenômenos Físicos , Espalhamento de Radiação , Silício/química , Temperatura , Vibração , Raios X
15.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(2 Pt 1): 023901, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14995507

RESUMO

This Comment corrects some errors which appeared in the calculation of an elastic sphere eigenenergies. As a result, the symmetry of the mode having the lowest frequency is changed. Also a direction for calculating the damping of these modes for embedded elastic spheres is given.


Assuntos
Modelos Biológicos , Modelos Químicos , Vírion/química , Vírion/metabolismo , Fenômenos Fisiológicos Virais , Simulação por Computador , Elasticidade , Concentração de Íons de Hidrogênio , Microesferas , Tamanho da Partícula , Tensão Superficial , Temperatura , Ultrassom , Vibração , Vírion/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...