Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 10(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36141280

RESUMO

Climate change can have economic consequences, affecting the nutritional intake of populations and increasing food insecurity, as it negatively affects diet quality parameters. One way to mitigate these consequences is to change the way we produce and consume our food. A healthy and sustainable diet aims to promote and achieve the physical, mental, and social well-being of the populations at all life stages, while protecting and safeguarding the resources of the planet and preserving biodiversity. Over the past few years, several indexes have been developed to evaluate dietary sustainability, most of them based on the EAT-Lancet reference diet. The present review explains the problems that arise in human nutrition as a result of climate change and presents currently available diet sustainability indexes and their applications and limitations, in an effort to aid researchers and policy actors in identifying aspects that need improvement in the development of relevant indexes. Overall, great heterogeneity exists among the indicators included in the available indexes and their methodology. Furthermore, many indexes do not adequately account for the diets' environmental impact, whereas others fall short in the economic impact domain, or the ethical aspects of sustainability. The present review reveals that the design of one environmentally friendly diet that is appropriate for all cultures, populations, patients, and geographic locations is a difficult task. For this, the development of sustainable and healthy diet recommendations that are region-specific and culturally specific, and simultaneously encompass all aspects of sustainability, is required.

2.
Biology (Basel) ; 11(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35205172

RESUMO

Seasonality, rather than annual precipitation levels, is expected to affect the adaptive responses of plant populations under future climate change. To estimate adaptive traits' variation, we conducted a common garden experiment with two beech populations from contrasting climatic origins (Evros with longer drought intervals during summer and higher precipitation seasonality, and Drama representing a more temperate ecosystem). We simulated two different watering treatments (frequent vs. non-frequent) on beech seedlings, according to predicted monthly precipitation levels expected to prevail in 2050 by the CSIRO MK3.6 SRESA1B model, considering as reference area a natural beech stand in Mt. Rodopi, Greece. A series of morphological and stem anatomical traits were measured. Seedling survival was greater for the Evros population compared to that of Drama under non-frequent watering, while no difference in survival was detected under frequent watering. Leaf morphological traits were not generally affected by watering frequency except for leaf circularity, which was found to be lower under non-frequent watering for both populations. Stomata density in leaves was found to be higher in the Evros population and lower in the Drama population under non-frequent watering than frequent. Stem anatomical traits were higher under non-frequent watering for Evros but lower for the Drama population. Multivariate analyses clearly discriminated populations under non-frequent rather than frequent watering, indicating genetic adaptation to the population's environment of origin.

3.
Front Plant Sci ; 9: 1918, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30671071

RESUMO

The ability of beech (Fagus sylvatica L.) populations to adapt to the ongoing climate change is especially important in the southern part of Europe, where environmental change is expected to be more intense. In this study, we tested the existing adaptive potential of eight beech populations from two provenances in N.E. Greece (Evros and Drama) that show differences in their environmental conditions and biogeographical background. Seedling survival, growth and leaf phenological traits were selected as adaptive traits and were measured under simulated controlled climate change conditions in a growth chamber. Seedling survival was also tested under current conditions in the field. In the growth chamber, simulated conditions of temperature and precipitation for the year 2050 were applied for 3 years, under two different irrigation schemes, where the same amount of water was distributed either frequently (once every week) or non-frequently (once in 20 days). The results showed that beech seedlings were generally able to survive under climate change conditions and showed adaptive differences among provenances and populations. Furthermore, changes in the duration of the growing season of seedlings were recorded in the growth chamber, allowing them to avoid environmental stress and high selection pressure. Differences were observed between populations and provenances in terms of temporal distribution patterns of precipitation and temperature, rather than the average annual or monthly values of these measures. Additionally, different adaptive strategies appeared among beech seedlings when the same amount of water was distributed differently within each month. This indicates that the physiological response mechanisms of beech individuals are very complex and depend on several interacting parameters. For this reason, the choice of beech provenances for translocation and use in afforestation or reforestation projects should consider the small scale ecotypic diversity of the species and view multiple environmental and climatic parameters in connection to each other.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA