Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6627, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103322

RESUMO

Functional genetics has identified drug targets for metabolic disorders. Opioid use impacts metabolic homeostasis, although mechanisms remain elusive. Here, we explore the OPRD1 gene (encoding delta opioid receptor, DOP) to understand its impact on type 2 diabetes. Large-scale sequencing of OPRD1 and in vitro analysis reveal that loss-of-function variants are associated with higher adiposity and lower hyperglycemia risk, whereas gain-of-function variants are associated with lower adiposity and higher type 2 diabetes risk. These findings align with studies of opium addicts. OPRD1 is expressed in human islets and beta cells, with decreased expression under type 2 diabetes conditions. DOP inhibition by an antagonist enhances insulin secretion from human beta cells and islets. RNA-sequencing identifies pathways regulated by DOP antagonism, including nerve growth factor, circadian clock, and nuclear receptor pathways. Our study highlights DOP as a key player between opioids and metabolic homeostasis, suggesting its potential as a therapeutic target for type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Receptores Opioides delta , Receptores Opioides delta/metabolismo , Receptores Opioides delta/genética , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Masculino , Feminino , Pessoa de Meia-Idade , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Secreção de Insulina/genética , Adulto
2.
J Neuroinflammation ; 20(1): 9, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639663

RESUMO

Acetylcholine receptor (AChR) myasthenia gravis (MG) is a chronic autoimmune disease characterized by muscle weakness. The AChR+ autoantibodies are produced by B-cells located in thymic ectopic germinal centers (eGC). No therapeutic approach is curative. The inflammatory IL-23/Th17 pathway is activated in the thymus as well as in the blood and the muscle, contributing to the MG pathogenic events. We aimed to study a potential new therapeutic approach that targets IL-23p19 (IL-23) in the two complementary preclinical MG models: the classical experimental MG mouse model (EAMG) based on active immunization and the humanized mouse model featuring human MG thymuses engrafted in NSG mice (NSG-MG). In both preclinical models, the anti-IL-23 treatment ameliorated MG clinical symptoms. In the EAMG, the treatment reduced IL-17 related inflammation, anti-AChR IgG2b antibody production, activated transduction pathway involved in muscle regeneration and ameliorated the signal transduction at the neuromuscular junction. In the NSG-MG model, the treatment reduced pathogenic Th17 cell population and expression of genes involved in eGC stabilization and B-cell development in human MG thymus biopsies. Altogether, these data suggest that a therapy targeting IL-23p19 may promote significant clinical ameliorations in AChR+ MG disease due to concomitant beneficial effects on the thymus and skeletal muscle defects.


Assuntos
Interleucina-23 , Miastenia Gravis Autoimune Experimental , Camundongos , Humanos , Animais , Subunidade p19 da Interleucina-23 , Receptores Colinérgicos , Junção Neuromuscular/patologia , Autoanticorpos
3.
Autoimmun Rev ; 19(3): 102468, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31927086

RESUMO

In western countries, the slope of autoimmune disease (AD) incidence is increasing and affects 5-8% of the population. Mainly prevalent in women, these pathologies are due to thymic tolerance processes breakdown. The female sex hormone, estrogen, is involved in this AD female susceptibility. However, predisposition factors have to act in concert with unknown triggering environmental factors (virus, microbiota, pollution) to initiate AD. Individuals are exposed to various environmental compounds that display endocrine disruption abilities. The cellular effects of some of these molecules may be mediated through the aryl hydrocarbon receptor (AhR). Here, we review the effects of these molecules on the homeostasis of the thymic cells, the immune tolerance intrinsic factors (transcription factors, epigenetic marks) and on the immune tolerance extrinsic factors (microbiota, virus sensibility). This review highlights the contribution of estrogen and endocrine disruptors on the dysregulation of mechanisms sustaining AD development.


Assuntos
Doenças Autoimunes/imunologia , Disruptores Endócrinos/efeitos adversos , Estrogênios/imunologia , Tolerância Imunológica , Timo/efeitos dos fármacos , Feminino , Humanos , Receptores de Hidrocarboneto Arílico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA