Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 454(7204): 651-5, 2008 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-18633350

RESUMO

The intestinal tract maintains proper function by replacing aged cells with freshly produced cells that arise from a population of self-renewing intestinal stem cells (ISCs). In the mammalian intestine, ISC self renewal, amplification and differentiation take place along the crypt-villus axis, and are controlled by the Wnt and hedgehog (Hh) signalling pathways. However, little is known about the mechanisms that specify ISCs within the developing intestinal epithelium, or about the signalling centres that help maintain them in their self-renewing stem cell state. Here we show that in adult Drosophila melanogaster, ISCs of the posterior intestine (hindgut) are confined to an anterior narrow segment, which we name the hindgut proliferation zone (HPZ). Within the HPZ, self renewal of ISCs, as well as subsequent proliferation and differentiation of ISC descendants, are controlled by locally emanating Wingless (Wg, a Drosophila Wnt homologue) and Hh signals. The anteriorly restricted expression of Wg in the HPZ acts as a niche signal that maintains cells in a slow-cycling, self-renewing mode. As cells divide and move posteriorly away from the Wg source, they enter a phase of rapid proliferation. During this phase, Hh signal is required for exiting the cell cycle and the onset of differentiation. The HPZ, with its characteristic proliferation dynamics and signalling properties, is set up during the embryonic phase and becomes active in the larva, where it generates all adult hindgut cells including ISCs. The mechanism and genetic control of cell renewal in the Drosophila HPZ exhibits a large degree of similarity with what is seen in the mammalian intestine. Our analysis of the Drosophila HPZ provides an insight into the specification and control of stem cells, highlighting the way in which the spatial pattern of signals that promote self renewal, growth and differentiation is set up within a genetically tractable model system.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Proliferação de Células , Proteínas de Ligação a DNA/metabolismo , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Mucosa Intestinal/citologia , Intestinos/citologia , Intestinos/embriologia , Intestinos/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Proteína Wnt1
2.
PLoS Genet ; 4(6): e1000102, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-18566664

RESUMO

The larval salivary gland of Drosophila melanogaster synthesizes and secretes glue glycoproteins that cement developing animals to a solid surface during metamorphosis. The steroid hormone 20-hydroxyecdysone (20E) is an essential signaling molecule that modulates most of the physiological functions of the larval gland. At the end of larval development, it is known that 20E--signaling through a nuclear receptor heterodimer consisting of EcR and USP--induces the early and late puffing cascade of the polytene chromosomes and causes the exocytosis of stored glue granules into the lumen of the gland. It has also been reported that an earlier pulse of hormone induces the temporally and spatially specific transcriptional activation of the glue genes; however, the receptor responsible for triggering this response has not been characterized. Here we show that the coordinated expression of the glue genes midway through the third instar is mediated by 20E acting to induce genes of the Broad Complex (BRC) through a receptor that is not an EcR/USP heterodimer. This result is novel because it demonstrates for the first time that at least some 20E-mediated, mid-larval, developmental responses are controlled by an uncharacterized receptor that does not contain an RXR-like component.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Ecdisterona/fisiologia , Metamorfose Biológica/fisiologia , Receptores de Esteroides/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Ligação a DNA/fisiologia , Dimerização , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas do Grude Salivar de Drosophila/genética , Proteínas do Grude Salivar de Drosophila/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Metamorfose Biológica/genética , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Transgenes/fisiologia
3.
Gene ; 295(1): 61-70, 2002 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-12242012

RESUMO

Mammalian DNase II enzymes and the Caenorhabditis elegans homolog NUC-1 have recently been shown to be critically important during engulfment-mediated clearance of DNA. In this report, we describe the cloning and characterization of the gene encoding Drosophila DNase II. Database queries using the C. elegans NUC-1 protein sequence identified a highly homologous open reading frame in Drosophila (CG7780) that could encode a similar enzyme. Analysis of crude protein extracts revealed that wild-type Drosophila contain a potent acid endonuclease activity with cleavage preferences similar to DNase II/NUC1, while the same activity was markedly reduced in an acid DNase hypomorphic mutant line. Furthermore, the pattern of cleavage products generated from an end-labeled substrate by hypomorphic-line extracts was significantly altered in comparison to the pattern generated by wild-type extracts. Sequence analysis of CG7780 DNA and mRNA revealed that the hypomorphic line contains a missense mutation within the coding region of this gene. Additionally, Northern analysis demonstrated that CG7780 expression is normal in the mutant line, which in combination with the lowered/altered enzymatic activity and sequencing data suggested a defect in the CG7780 protein. To conclusively determine if CG7780 encoded the Drosophila equivalent of DNase II/NUC-1, transgenic lines expressing wild-type CG7780 in the mutant background were generated and subsequently shown to complement the mutant phenotype. Our results, therefore, provide compelling evidence that the predicted gene CG7780 encodes Drosophila DNase II (dDNase II), an enzyme related in sequence and activity to mammalian DNase II. Interestingly, overexpression of CG7780 both ubiquitously and in specific tissues failed to elicit any discernable phenotype.


Assuntos
Desoxirribonucleases/genética , Drosophila/enzimologia , Endodesoxirribonucleases/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação/genética , Mapeamento Cromossômico , DNA/genética , DNA/metabolismo , Desoxirribonucleases/metabolismo , Endodesoxirribonucleases/metabolismo , Genes de Insetos/genética , Humanos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...