Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 92(9): 093508, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598532

RESUMO

In this paper, we report on a crystal based x-ray imaging system fielded at the OMEGA EP laser facility. This new system has a pointing accuracy of +/100 µm, a temporal resolution down to 100 ps (depending on backlighter characteristics), variable magnification, and a spatial resolution of 21.9 µm at the object plane at a magnification of 15×. The system is designed to use a crystal along the crystal plane that satisfies the Bragg condition for the x ray of interest. The thin crystal is then bent into a spherical geometry and attached to a glass backing substrate to hold it in the diagnostic, and the x rays are imaged onto a charge coupled device. We report on data acquired with the new Los Alamos National Laboratory supplied spherical quartz crystal to image the Mn He-α 6.15 keV line emission.

2.
Phys Rev E ; 102(4-1): 043212, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33212701

RESUMO

In this work, we present results from experiments capable of producing and measuring the propagation of multiple successive, copropagating shocks across an unstable planar interface, where the shocks are independently driven and separately controllable, enabling the study of this important phenomenon. Copropagating shocks play a significant role in a wide range of systems involving stratified media subject to a shock, and exhibit different physical characteristics compared to counterpropagating shocks. Existing techniques, however, preclude copropagating shocks, so experiments to date have been limited to the study of counterpropagating shocks. We address this previous limitation and open a physical parameter space for study using a new hohlraum platform on the National Ignition Facility. Initial experimental results are presented together with comparisons from numerical simulations.

3.
Phys Rev E ; 95(2-1): 023202, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28297959

RESUMO

We report an experimental and computational study investigating the effects of laser preheat on the hydrodynamic behavior of a material layer. In particular, we find that perturbation of the surface of the layer results in a complex interaction, in which the bulk of the layer develops density, pressure, and temperature structure and in which the surface experiences instability-like behavior, including mode coupling. A uniform one-temperature preheat model is used to reproduce the experimentally observed behavior, and we find that this model can be used to capture the evolution of the layer, while also providing evidence of complexities in the preheat behavior. This result has important consequences for inertially confined fusion plasmas, which can be difficult to diagnose in detail, as well as for laser hydrodynamics experiments, which generally depend on assumptions about initial conditions in order to interpret their results.

4.
Phys Rev Lett ; 117(22): 225001, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27925731

RESUMO

Using a large volume high-energy-density fluid shear experiment (8.5 cm^{3}) at the National Ignition Facility, we have demonstrated for the first time the ability to significantly alter the evolution of a supersonic sheared mixing layer by controlling the initial conditions of that layer. By altering the initial surface roughness of the tracer foil, we demonstrate the ability to transition the shear mixing layer from a highly ordered system of coherent structures to a randomly ordered system with a faster growing mix layer, indicative of strong mixing in the layer at a temperature of several tens of electron volts and at near solid density. Simulations using a turbulent-mix model show good agreement with the experimental results and poor agreement without turbulent mix.

5.
Phys Rev E ; 94(2-1): 023101, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27627387

RESUMO

Coherent emergent structures have been observed in a high-energy-density supersonic mixing layer experiment. A millimeter-scale shock tube uses lasers to drive Mbar shocks into the tube volume. The shocks are driven into initially solid foam (60 mg/cm^{3}) hemicylinders separated by an Al or Ti metal tracer strip; the components are vaporized by the drive. Before the experiment disassembles, the shocks cross at the tube center, creating a very fast (ΔU> 200 km/s) shear-unstable zone. After several nanoseconds, an expanding mixing layer is measured, and after 10+ ns we observe the appearance of streamwise-periodic, spanwise-aligned rollers associated with the primary Kelvin-Helmholtz instability of mixing layers. We additionally image roller pairing and spanwise-periodic streamwise-aligned filaments associated with secondary instabilities. New closures are derived to connect length scales of these structures to estimates of fluctuating velocity data otherwise unobtainable in the high-energy-density environment. This analysis indicates shear-induced specific turbulent energies 10^{3}-10^{4} times higher than the nearest conventional experiments. Because of difficulties in continuously driving systems under these conditions and the harshness of the experimental environment limiting the usable diagnostics, clear evidence of these developing structures has never before been observed in this regime.

6.
Rev Sci Instrum ; 87(7): 075103, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27475591

RESUMO

The counter-propagating shear campaign is examining instability growth and its transition to turbulence in the high-energy-density physics regime using a laser-driven counter-propagating flow platform. In these experiments, we observe consistent complex break-up of and structure growth in a tracer layer placed at the shear flow interface during the instability growth phase. We present a wavelet-transform based analysis technique capable of characterizing the scale- and directionality-resolved average intensity perturbations in static radiographs of the experiment. This technique uses the complete spatial information available in each radiograph to describe the structure evolution. We designed this analysis technique to generate a two-dimensional power spectrum for each radiograph from which we can recover information about structure widths, amplitudes, and orientations. The evolution of the distribution of power in the spectra for an experimental series is a potential metric for quantifying the structure size evolution as well as a system's evolution towards isotropy.

7.
Rev Sci Instrum ; 85(9): 093501, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25273720

RESUMO

A very large area (7.5 mm(2)) laser-driven x-ray backlighter, termed the Big Area BackLighter (BABL) has been developed for the National Ignition Facility (NIF) to support high energy density experiments. The BABL provides an alternative to Pinhole-Apertured point-projection Backlighting (PABL) for a large field of view. This bypasses the challenges for PABL in the equatorial plane of the NIF target chamber where space is limited because of the unconverted laser light that threatens the diagnostic aperture, the backlighter foil, and the pinhole substrate. A transmission experiment using 132 kJ of NIF laser energy at a maximum intensity of 8.52 × 10(14) W/cm(2) illuminating the BABL demonstrated good conversion efficiency of >3.5% into K-shell emission producing ~4.6 kJ of high energy x rays, while yielding high contrast images with a highly uniform background that agree well with 2D simulated spectra and spatial profiles.

8.
Phys Rev Lett ; 111(8): 085003, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010448

RESUMO

We present spatially resolved measurements characterizing the stagnation layer between two obliquely merging supersonic plasma jets. Intrajet collisionality is very high, but the interjet ion-ion mean free path is of the order of the stagnation layer thickness of a few centimeters. Fast-framing camera images show a double-peaked emission profile transverse to the stagnation layer, with the central emission dip consistent with a density dip in the interferometer data. We demonstrate that our observations are consistent with collisional oblique shocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...