Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Infect Dis ; 8(4): 855-864, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35315654

RESUMO

The antinoroviral effect of copper ions is well known, yet most of this work has previously been conducted in copper and copper alloy surfaces, not copper ions in solution. In this work, we characterized the effects that Cu ions have on human norovirus capsids' and surrogates' integrity to explain empirical data, indicating virus inactivation by copper alloy surfaces, and as means of developing novel metal ion-based virucides. Comparatively high concentrations of Cu(II) ions (>10 mM) had little effect on the infectivity of human norovirus surrogates, so we used sodium ascorbate as a reducing agent to generate unstable Cu(I) ions from solutions of copper bromide. We found that significantly lower concentrations of monovalent copper ions (∼0.1 mM) compared to divalent copper ions cause capsid protein damage that prevents human norovirus capsids from binding to cell receptors in vitro and induce a greater than 4-log reduction in infectivity of Tulane virus, a human norovirus surrogate. Further, these Cu(I) solutions caused reduction of GII.4 norovirus from stool in suspension, producing about a 2-log reduction of virus as measured by a reverse transcriptase-quantitative polymerase chain reaction. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) data indicate substantial major capsid protein cleavage of both GI.7 and GII.4 norovirus capsids, and TEM images show the complete loss of capsid integrity of GI.7 norovirus. GII.4 virus-like particles (VLPs) were less susceptible to inactivation by copper ion treatments than GI.7 VLPs based upon receptor binding and SDS-PAGE analysis of viral capsids. The combined data demonstrate that stabilized Cu(I) ion solutions show promise as highly effective noroviral disinfectants in solution that can potentially be utilized at low concentrations for inactivation of human noroviruses.


Assuntos
Cobre , Norovirus , Inativação de Vírus , Ligas/farmacologia , Proteínas do Capsídeo , Catálise , Cobre/farmacologia , Íons , Norovirus/efeitos dos fármacos , Norovirus/fisiologia
2.
J Vis Exp ; (129)2017 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-29286453

RESUMO

Human norovirus exacts considerable public health and economic losses worldwide. Emerging in vitro cultivation advances are not yet applicable for routine detection of the virus. The current detection and quantification techniques, which rely primarily on nucleic acid amplification, do not discriminate infectious from non-infectious viral particles. The purpose of this article is to present specific details on recent advances in techniques used together in order to acquire further information on the infectivity status of viral particles. One technique involves assessing binding of a norovirus ssDNA aptamer to capsids. Aptamers have the advantage of being easily synthesized and modified, and are inexpensive and stable. Another technique, dynamic light scattering (DLS), has the advantage of observing capsid behavior in solution. Electron microscopy allows for visualization of the structural integrity of the viral capsids. Although promising, there are some drawbacks to each technique, such as non-specific aptamer binding to positively-charged molecules from sample matrices, requirement of purified capsid for DLS, and poor sensitivity for electron microscopy. Nonetheless, when these techniques are used in combination, the body of data produced provides more comprehensive information on norovirus capsid integrity that can be used to infer infectivity, information which is essential for accurate evaluation of inactivation methods or interpretation of virus detection. This article provides protocols for using these methods to discriminate infectious human norovirus particles.


Assuntos
Aptâmeros de Peptídeos/química , Proteínas do Capsídeo/química , Microscopia Eletrônica/métodos , Norovirus/química , Vírion/química , Aptâmeros de Peptídeos/genética , Genoma Viral , Humanos , Norovirus/genética , Norovirus/metabolismo , Vírion/genética
3.
Soft Matter ; 11(44): 8621-31, 2015 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-26378627

RESUMO

Understanding of the colloidal interactions of Norovirus particles in aqueous medium could provide insights on the origins of the notorious stability and infectivity of these widespread viral agents. We characterized the effects of solution pH and surfactant type and concentration on the aggregation, dispersion, and disassembly of Norovirus virus-like particles (VLPs) using dynamic light scattering, electrophoretic light scattering, and transmission electron microscopy. Owing to net negative surface charge of the VLPs at neutral pH, low concentrations of cationic surfactant tend to aggregate the VLPs, whereas low concentrations of anionic surfactant tend to disperse the particles. Increasing the concentration of these surfactants beyond their critical micelle concentration leads to virus capsid disassembly and breakdown of aggregates. Non-ionic surfactants, however, had little effect on virus interactions and likely stabilized them additionally in suspension. The data were interpreted on the basis of simple models for surfactant binding and re-charging of the virus capsid. We used zeta potential data to characterize virus surface charge and interpret the mechanisms behind these demonstrated surfactant-virus interactions. The fundamental understanding and control of these interactions will aid in practical formulations for virus inactivation and removal from contaminated surfaces.


Assuntos
Norovirus/química , Tensoativos/química , Coloides/química , Concentração de Íons de Hidrogênio , Norovirus/efeitos dos fármacos , Agregados Proteicos , Eletricidade Estática , Tensoativos/farmacologia , Vacinas de Partículas Semelhantes a Vírus/química , Vacinas de Partículas Semelhantes a Vírus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...