Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Clin Epigenetics ; 15(1): 171, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37885041

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease with a poor prognosis. Dysregulation of the epigenetic machinery is a significant contributor to disease development. Some AML patients benefit from treatment with hypomethylating agents (HMAs), but no predictive biomarkers for therapy response exist. Here, we investigated whether unbiased genome-wide assessment of pre-treatment DNA-methylation profiles in AML bone marrow blasts can help to identify patients who will achieve a remission after an azacytidine-containing induction regimen. RESULTS: A total of n = 155 patients with newly diagnosed AML treated in the AMLSG 12-09 trial were randomly assigned to a screening and a refinement and validation cohort. The cohorts were divided according to azacytidine-containing induction regimens and response status. Methylation status was assessed for 664,227 500-bp-regions using methyl-CpG immunoprecipitation-seq, resulting in 1755 differentially methylated regions (DMRs). Top regions were distilled and included genes such as WNT10A and GATA3. 80% of regions identified as a hit were represented on HumanMethlyation 450k Bead Chips. Quantitative methylation analysis confirmed 90% of these regions (36 of 40 DMRs). A classifier was trained using penalized logistic regression and fivefold cross validation containing 17 CpGs. Validation based on mass spectra generated by MALDI-TOF failed (AUC 0.59). However, discriminative ability was maintained by adding neighboring CpGs. A recomposed classifier with 12 CpGs resulted in an AUC of 0.77. When evaluated in the non-azacytidine containing group, the AUC was 0.76. CONCLUSIONS: Our analysis evaluated the value of a whole genome methyl-CpG screening assay for the identification of informative methylation changes. We also compared the informative content and discriminatory power of regions and single CpGs for predicting response to therapy. The relevance of the identified DMRs is supported by their association with key regulatory processes of oncogenic transformation and support the idea of relevant DMRs being enriched at distinct loci rather than evenly distribution across the genome. Predictive response to therapy could be established but lacked specificity for treatment with azacytidine. Our results suggest that a predictive epigenotype carries its methylation information at a complex, genome-wide level, that is confined to regions, rather than to single CpGs. With increasing application of combinatorial regimens, response prediction may become even more complicated.


Assuntos
Metilação de DNA , Leucemia Mieloide Aguda , Humanos , Azacitidina/uso terapêutico , Medula Óssea , Ilhas de CpG , Epigênese Genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
2.
Genome Res ; 33(10): 1649-1661, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37699659

RESUMO

The location of nucleosomes in the human genome determines the primary chromatin structure and regulates access to regulatory regions. However, genome-wide information on deregulated nucleosome occupancy and its implications in primary cancer cells is scarce. Here, we conducted a genome-wide comparison of high-resolution nucleosome maps in peripheral blood B cells from patients with chronic lymphocytic leukemia (CLL) and healthy individuals at single-base-pair resolution. Our investigation uncovered significant changes of nucleosome positioning in CLL. Globally, the spacing between nucleosomes-the nucleosome repeat length (NRL)-is shortened in CLL. This effect is stronger in the more aggressive IGHV-unmutated CLL subtype than in the IGHV-mutated CLL subtype. Changes in nucleosome occupancy at specific sites are linked to active chromatin remodeling and reduced DNA methylation. Nucleosomes lost or gained in CLL marks differential binding of 3D chromatin organizers such as CTCF as well as immune response-related transcription factors and delineated mechanisms of epigenetic deregulation. The principal component analysis of nucleosome occupancy in cancer-specific regions allowed the classification of samples between cancer subtypes and normal controls. Furthermore, patients could be better assigned to CLL subtypes according to differential nucleosome occupancy than based on DNA methylation or gene expression. Thus, nucleosome positioning constitutes a novel readout to dissect molecular mechanisms of disease progression and to stratify patients. Furthermore, we anticipate that the global nucleosome repositioning detected in our study, such as changes in the NRL, can be exploited for liquid biopsy applications based on cell-free DNA to stratify patients and monitor disease progression.


Assuntos
Leucemia Linfocítica Crônica de Células B , Nucleossomos , Humanos , Nucleossomos/genética , Leucemia Linfocítica Crônica de Células B/genética , Cromatina , Fatores de Transcrição/metabolismo , Progressão da Doença
5.
Gut Microbes ; 14(1): 2143218, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415023

RESUMO

With increasing urbanization and industrialization, the prevalence of inflammatory bowel diseases (IBDs) has steadily been rising over the past two decades. IBD involves flares of gastrointestinal (GI) inflammation accompanied by microbiota perturbations. However, microbial mechanisms that trigger such flares remain elusive. Here, we analyzed the association of the emerging pathogen atypical enteropathogenic E. coli (aEPEC) with IBD disease activity. The presence of diarrheagenic E. coli was assessed in stool samples from 630 IBD patients and 234 age- and sex-matched controls without GI symptoms. Microbiota was analyzed with 16S ribosomal RNA gene amplicon sequencing, and 57 clinical aEPEC isolates were subjected to whole-genome sequencing and in vitro pathogenicity experiments including biofilm formation, epithelial barrier function and the ability to induce pro-inflammatory signaling. The presence of aEPEC correlated with laboratory, clinical and endoscopic disease activity in ulcerative colitis (UC), as well as microbiota dysbiosis. In vitro, aEPEC strains induce epithelial p21-activated kinases, disrupt the epithelial barrier and display potent biofilm formation. The effector proteins espV and espG2 distinguish aEPEC cultured from UC and Crohn's disease patients, respectively. EspV-positive aEPEC harbor more virulence factors and have a higher pro-inflammatory potential, which is counteracted by 5-ASA. aEPEC may tip a fragile immune-microbiota homeostasis and thereby contribute to flares in UC. aEPEC isolates from UC patients display properties to disrupt the epithelial barrier and to induce pro-inflammatory signaling in vitro.


Assuntos
Colite Ulcerativa , Escherichia coli Enteropatogênica , Infecções por Escherichia coli , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Humanos , Escherichia coli Enteropatogênica/genética
6.
Cell Death Dis ; 13(7): 600, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35821235

RESUMO

Notch signaling plays a pivotal role in the development and, when dysregulated, it contributes to tumorigenesis. The amplitude and duration of the Notch response depend on the posttranslational modifications (PTMs) of the activated NOTCH receptor - the NOTCH intracellular domain (NICD). In normoxic conditions, the hydroxylase FIH (factor inhibiting HIF) catalyzes the hydroxylation of two asparagine residues of the NICD. Here, we investigate how Notch-dependent gene transcription is regulated by hypoxia in progenitor T cells. We show that the majority of Notch target genes are downregulated upon hypoxia. Using a hydroxyl-specific NOTCH1 antibody we demonstrate that FIH-mediated NICD1 hydroxylation is reduced upon hypoxia or treatment with the hydroxylase inhibitor dimethyloxalylglycine (DMOG). We find that a hydroxylation-resistant NICD1 mutant is functionally impaired and more ubiquitinated. Interestingly, we also observe that the NICD1-deubiquitinating enzyme USP10 is downregulated upon hypoxia. Moreover, the interaction between the hydroxylation-defective NICD1 mutant and USP10 is significantly reduced compared to the NICD1 wild-type counterpart. Together, our data suggest that FIH hydroxylates NICD1 in normoxic conditions, leading to the recruitment of USP10 and subsequent NICD1 deubiquitination and stabilization. In hypoxia, this regulatory loop is disrupted, causing a dampened Notch response.


Assuntos
Receptor Notch1 , Hipóxia Celular , Humanos , Hidroxilação , Oxigenases de Função Mista/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Linfócitos T/metabolismo , Ubiquitina Tiolesterase/metabolismo
7.
Int J Cancer ; 151(5): 783-796, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35527719

RESUMO

B-cell receptor (BCR) signaling is central for the pathomechanism of chronic lymphocytic leukemia (CLL), and inhibitors of BCR signaling have substantially improved treatment options. To model malignant and nonmalignant BCR signaling, we quantified five components of BCR signaling (ZAP70/SYK, BTK, PLCγ2, AKT, ERK1/2) in single cells from primary human leukemic cells and from nonmalignant tissue. We measured signaling activity in a time-resolved manner after stimulation with BCR crosslinking by anti-IgM and/or anti-CD19 and with or without inhibition of phosphatases with H2 O2 . The phosphorylation of BCR signaling components was increased in malignant cells compared to nonmalignant cells and in IGHV unmutated CLL cells compared to IGHV mutated CLL cells. Intriguingly, inhibition of phosphatases with H2 O2 led to higher phosphorylation levels of BCR components in CLL cells with mutated IGHV compared to unmutated IGHV. We modeled the connectivity of the cascade components by correlating signal intensities across single cells. The network topology remained stable between malignant and nonmalignant cells. To additionally test for the impact of therapeutic compounds on the network topology, we challenged the BCR signaling cascade with inhibitors for BTK (ibrutinib), PI3K (idelalisib), LYN (dasatinib) and SYK (entospletinib). Idelalisib treatment resulted in similar effects in malignant and nonmalignant cells, whereas ibrutinib was mostly active on CLL cells. Idelalisib and ibrutinib had complementary effects on the BCR signaling cascade whose activity was further reduced upon dasatinib and entospletinib treatment. The characterization of the molecular circuitry of leukemic BCR signaling will allow a more refined targeting of this Achilles heel.


Assuntos
Linfócitos B , Leucemia Linfocítica Crônica de Células B , Inibidores de Proteínas Quinases , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linfócitos B/efeitos dos fármacos , Linfócitos B/patologia , Dasatinibe/farmacologia , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/fisiopatologia , Monoéster Fosfórico Hidrolases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptores de Antígenos de Linfócitos B , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
8.
Haematologica ; 107(3): 604-614, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33691380

RESUMO

Clonal evolution is involved in the progression of chronic lymphocytic leukemia (CLL). In order to link evolutionary patterns to different disease courses, we performed a long-term longitudinal mutation profiling study of CLL patients. Tracking somatic mutations and their changes in allele frequency over time and assessing the underlying cancer cell fraction revealed highly distinct evolutionary patterns. Surprisingly, in long-term stable disease and in relapse after long-lasting clinical response to treatment, clonal shifts are minor. In contrast, in refractory disease major clonal shifts occur although there is little impact on leukemia cell counts. As this striking pattern in refractory cases is not linked to a strong contribution of known CLL driver genes, the evolution is mostly driven by treatment-induced selection of sub-clones, underlining the need for novel, non-genotoxic treatment regimens.


Assuntos
Leucemia Linfocítica Crônica de Células B , Evolução Clonal/genética , Células Clonais , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Estudos Longitudinais , Mutação
9.
Blood ; 139(6): 859-875, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34662393

RESUMO

Covalent Bruton tyrosine kinase (BTK) inhibitors, such as ibrutinib, have proven to be highly beneficial in the treatment of chronic lymphocytic leukemia (CLL). Interestingly, the off-target inhibition of IL-2-inducible T-cell kinase (ITK) by ibrutinib may also play a role in modulating the tumor microenvironment, potentially enhancing the treatment benefit. However, resistance to covalently binding BTK inhibitors can develop as the result of a mutation in cysteine 481 of BTK (C481S), which prevents irreversible binding of the drugs. In the present study we performed preclinical characterization of vecabrutinib, a next-generation noncovalent BTK inhibitor that has ITK-inhibitory properties similar to those of ibrutinib. Unlike ibrutinib and other covalent BTK inhibitors, vecabrutinib showed retention of the inhibitory effect on C481S BTK mutants in vitro, similar to that of wild-type BTK. In the murine Eµ-TCL1 adoptive transfer model, vecabrutinib reduced tumor burden and significantly improved survival. Vecabrutinib treatment led to a decrease in CD8+ effector and memory T-cell populations, whereas the naive populations were increased. Of importance, vecabrutinib treatment significantly reduced the frequency of regulatory CD4+ T cells in vivo. Unlike ibrutinib, vecabrutinib treatment showed minimal adverse impact on the activation and proliferation of isolated T cells. Lastly, combination treatment with vecabrutinib and venetoclax augmented treatment efficacy, significantly improved survival, and led to favorable reprogramming of the microenvironment in the murine Eµ-TCL1 model. Thus, noncovalent BTK/ITK inhibitors, such as vecabrutinib, may be efficacious in C481S BTK mutant CLL while preserving the T-cell immunomodulatory function of ibrutinib.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Leucemia Linfocítica Crônica de Células B , Inibidores de Proteínas Quinases , Proteínas Tirosina Quinases , Animais , Feminino , Humanos , Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Linhagem Celular Tumoral , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , Camundongos Endogâmicos C57BL , Modelos Moleculares , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Carga Tumoral/efeitos dos fármacos
10.
Haematologica ; 107(3): 615-624, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33730841

RESUMO

Chemoimmunotherapy with fludarabine, cyclophosphamide and rituximab (FCR) can induce long-term remissions in patients with chronic lymphocytic leukemia. Treatment efficacy with Bruton's tyrosine kinase inhibitors was found similar to FCR in untreated chronic lymphocytic leukemia patients with a mutated immunoglobulin heavy chain variable (IGHV) gene. In order to identify patients who specifically benefit from FCR, we developed integrative models including established prognostic parameters and gene expression profiling (GEP). GEP was conducted on n=337 CLL8 trial samples, "core" probe sets were summarized on gene levels and RMA normalized. Prognostic models were built using penalized Cox proportional hazards models with the smoothly clipped absolute deviation penalty. We identified a prognostic signature of less than a dozen genes, which substituted for established prognostic factors, including TP53 and IGHV gene mutation status. Independent prognostic impact was confirmed for treatment, ß2-microglobulin and del(17p) regarding overall survival and for treatment, del(11q), del(17p) and SF3B1 mutation for progression-free survival. The combination of independent prognostic and GEP variables performed equal to models including only established non-GEP variables. GEP variables showed higher prognostic accuracy for patients with long progression-free survival compared to categorical variables like the IGHV gene mutation status and reliably predicted overall survival in CLL8 and an independent cohort. GEP-based prognostic models can help to identify patients who specifically benefit from FCR treatment. The CLL8 trial is registered under EUDRACT-2004- 004938-14 and clinicaltrials gov. Identifier: NCT00281918.


Assuntos
Leucemia Linfocítica Crônica de Células B , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Ciclofosfamida/uso terapêutico , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Prognóstico , Rituximab/uso terapêutico
11.
Cancers (Basel) ; 15(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36612190

RESUMO

WNT pathways play an important role in cancer development and progression, but WNT pathways can also inhibit growth in melanoma, prostate, and ovarian cancers. Chronic lymphocytic leukemia (CLL) is known for its overexpression of several WNT ligands and receptors. Canonical WNT signaling is ß-catenin-dependent, whereas non-canonical WNT signaling is ß-catenin-independent. Research on WNT in CLL focuses mainly on non-canonical signaling due to the high expression of the WNT-5a receptor ROR1. However, it was also shown that mutations in canonical WNT pathway genes can lead to WNT activation in CLL. The focus of this review is ß-catenin-independent signaling and ß-catenin-dependent signaling within CLL cells and the role of WNT in the leukemic microenvironment. The major role of WNT pathways in CLL pathogenesis also makes WNT a possible therapeutic target, directly or in combination with other drugs.

12.
Nat Commun ; 12(1): 5395, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34518531

RESUMO

Knowledge of the genomic landscape of chronic lymphocytic leukemia (CLL) grows increasingly detailed, providing challenges in contextualizing the accumulated information. To define the underlying networks, we here perform a multi-platform molecular characterization. We identify major subgroups characterized by genomic instability (GI) or activation of epithelial-mesenchymal-transition (EMT)-like programs, which subdivide into non-inflammatory and inflammatory subtypes. GI CLL exhibit disruption of genome integrity, DNA-damage response and are associated with mutagenesis mediated through activation-induced cytidine deaminase or defective mismatch repair. TP53 wild-type and mutated/deleted cases constitute a transcriptionally uniform entity in GI CLL and show similarly poor progression-free survival at relapse. EMT-like CLL exhibit high genomic stability, reduced benefit from the addition of rituximab and EMT-like differentiation is inhibited by induction of DNA damage. This work extends the perspective on CLL biology and risk categories in TP53 wild-type CLL. Furthermore, molecular targets identified within each subgroup provide opportunities for new treatment approaches.


Assuntos
Transição Epitelial-Mesenquimal/genética , Perfilação da Expressão Gênica/métodos , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes , Instabilidade Genômica , Leucemia Linfocítica Crônica de Células B/genética , Proteínas Mutadas de Ataxia Telangiectasia/genética , Aberrações Cromossômicas , Dano ao DNA , Reparo do DNA , Humanos , Mutação , Polimorfismo de Nucleotídeo Único , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteína Supressora de Tumor p53/genética
13.
Cancer Discov ; 11(9): 2266-2281, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33972312

RESUMO

Epigenetic alterations, such as promoter hypermethylation, may drive cancer through tumor suppressor gene inactivation. However, we have limited ability to differentiate driver DNA methylation (DNAme) changes from passenger events. We developed DNAme driver inference-MethSig-accounting for the varying stochastic hypermethylation rate across the genome and between samples. We applied MethSig to bisulfite sequencing data of chronic lymphocytic leukemia (CLL), multiple myeloma, ductal carcinoma in situ, glioblastoma, and to methylation array data across 18 tumor types in TCGA. MethSig resulted in well-calibrated quantile-quantile plots and reproducible inference of likely DNAme drivers with increased sensitivity/specificity compared with benchmarked methods. CRISPR/Cas9 knockout of selected candidate CLL DNAme drivers provided a fitness advantage with and without therapeutic intervention. Notably, DNAme driver risk score was closely associated with adverse outcome in independent CLL cohorts. Collectively, MethSig represents a novel inference framework for DNAme driver discovery to chart the role of aberrant DNAme in cancer. SIGNIFICANCE: MethSig provides a novel statistical framework for the analysis of DNA methylation changes in cancer, to specifically identify candidate DNA methylation driver genes of cancer progression and relapse, empowering the discovery of epigenetic mechanisms that enhance cancer cell fitness.This article is highlighted in the In This Issue feature, p. 2113.


Assuntos
Metilação de DNA/genética , Leucemia Linfocítica Crônica de Células B/genética , Epigênese Genética , Humanos
15.
Haematologica ; 105(10): 2440-2447, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33054084

RESUMO

Next generation sequencing studies in Chronic lymphocytic leukemia (CLL) have revealed novel genetic variants that have been associated with disease characteristics and outcome. The aim of this study was to evaluate the prognostic value of recurrent molecular abnormalities in patients with CLL. Therefore, we assessed their incidences and associations with other clinical and genetic markers in the prospective multicenter COMPLEMENT1 trial (treatment naive patients not eligible for intensive treatment randomized to chlorambucil (CHL) vs. ofatumumab-CHL (O-CHL)). Baseline samples were available from 383 patients (85.6%) representative of the total trial cohort. Mutations were analyzed by amplicon-based targeted next generation sequencing (tNGS). In 52.2% of patients we found at least one mutation and the incidence was highest in NOTCH1 (17.0%), followed by SF3B1 (14.1%), ATM (11.7%), TP53 (10.2%), POT1 (7.0%), RPS15 (4.4%), FBXW7 (3.4%), MYD88 (2.6%) and BIRC3 (2.3%). While most mutations lacked prognostic significance, TP53 (HR2.02,p<0.01), SF3B1 (HR1.66,p=0.01) and NOTCH1 (HR1.39,p=0.03) were associated with inferior PFS in univariate analysis. Multivariate analysis confirmed the independent prognostic role of TP53 for PFS (HR1.71,p=0.04) and OS (HR2.78,p=0.02) and of SF3B1 for PFS only (HR1.52,p=0.02). Notably, NOTCH1 mutation status separates patients with a strong and a weak benefit from ofatumumab addition to CHL (NOTCH1wt:HR0.50,p<0.01, NOTCH1mut:HR0.81,p=0.45). In summary, TP53 and SF3B1 were confirmed as independent prognostic and NOTCH1 as a predictive factor for reduced ofatumumab efficacy in a randomized chemo (immune)therapy CLL trial. These results validate NGS-based mutation analysis in a multicenter trial and provide a basis for expanding molecular testing in the prognostic workup of patients with CLL. ClinicalTrials.gov registration number: NCT00748189.


Assuntos
Leucemia Linfocítica Crônica de Células B , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Fosfoproteínas/genética , Prognóstico , Estudos Prospectivos , Fatores de Processamento de RNA/genética , Receptor Notch1/genética
16.
Sci Data ; 7(1): 133, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358561

RESUMO

Acquired resistance to chemotherapy is an important clinical problem and can also occur without detectable cytogenetic aberrations or gene mutations. Chronic lymphocytic leukemia (CLL) is molecularly well characterized and has been elemental for establishing central paradigms in oncology. This prompted us to check whether specific epigenetic changes at the level of DNA methylation might underlie development of treatment resistance. We used Illumina Infinium HumanMethylation450 BeadChips to obtain DNA methylation profiles of 71 CLL patients with differential responses. Thirty-six patients were categorized as relapsed/refractory after treatment with fludarabine or bendamustine and 21 of them had genetic aberrations of TP53. The other 35 patients were untreated at the time of sampling and 15 of them had genetic aberration of TP53. Although we could not correlate chemoresistance with epigenetic changes, the patients were comprehensively characterized regarding relevant prognostic and molecular markers (e.g. IGHV mutation status, chromosome aberrations, TP53 mutation status, clinical parameters), which makes our dataset a unique and valuable resource that can be used by researchers to test alternative hypotheses.


Assuntos
Metilação de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Linfocítica Crônica de Células B/genética , Cloridrato de Bendamustina/uso terapêutico , Humanos , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Vidarabina/análogos & derivados , Vidarabina/uso terapêutico
17.
Blood ; 135(26): 2402-2412, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32206772

RESUMO

Genetic parameters are established prognostic factors in chronic lymphocytic leukemia (CLL) treated with chemoimmunotherapy, but are less well studied with novel compounds. We assessed immunoglobulin heavy variable chain (IGHV) mutation status, common genomic aberrations, and gene mutations in 421 untreated patients within the CLL14 trial (NCT02242942), comparing obinutuzumab+chlorambucil (GClb) vs obinutuzumab+venetoclax (VenG). The incidences of genomic aberrations considering the hierarchical model were del(17p) 7%, del(11q) 18%, +12 18%, and del(13q) 35%, whereas IGHV was unmutated in 60% of patients. NOTCH1 mutations were most common (23%), followed by SF3B1 (16%), ATM (13%), and TP53 (10%). Although the overall response rate (ORR) for GClb was lower in patients with del(17p), del(11q), mutated TP53, ATM, and BIRC3, none of these parameters reduced complete remission (CR) rate and ORR with VenG. At a median follow-up of 28 months, del(17p) and mutated TP53 were the only abnormalities with an effect on progression-free survival (PFS) for both treatment groups: GClb (hazard ratio [HR], 4.6 [P < .01]; HR, 2.7 [P < .01], respectively) and VenG (HR, 4.4 [P < .01]; HR, 3.1 [P < .01], respectively). No other factors affected outcome with VenG, whereas for GClb del(11q), BIRC3, NOTCH1, and unmutated IGHV were associated with shorter PFS. Multivariable analysis identified del(17p), del(11q), unmutated IGHV, and mutated TP53, BIRC3, and SF3B1 as independent prognostic factors for PFS with GClb, whereas for VenG, only del(17p) was significant. VenG was superior to GClb across most genetic subgroups. Patients with adverse genetic markers had the strongest benefit from VenG, particularly subjects with unmutated IGHV, which was identified as a predictive factor in a multivariable treatment-interaction analysis.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Marcadores Genéticos , Anticorpos Monoclonais Humanizados/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Clorambucila/administração & dosagem , Aberrações Cromossômicas , Ensaios Clínicos Fase III como Assunto/estatística & dados numéricos , Seguimentos , Genes Neoplásicos , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Estimativa de Kaplan-Meier , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Leucemia Linfocítica Crônica de Células B/mortalidade , Estudos Multicêntricos como Assunto , Mutação , Neoplasia Residual , Prognóstico , Intervalo Livre de Progressão , Indução de Remissão , Sulfonamidas/administração & dosagem
18.
Genome Med ; 12(1): 29, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-32188505

RESUMO

BACKGROUND: In cancer, normal epigenetic patterns are disturbed and contribute to gene expression changes, disease onset, and progression. The cancer epigenome is composed of the epigenetic patterns present in the tumor-initiating cell at the time of transformation, and the tumor-specific epigenetic alterations that are acquired during tumor initiation and progression. The precise dissection of these two components of the tumor epigenome will facilitate a better understanding of the biological mechanisms underlying malignant transformation. Chronic lymphocytic leukemia (CLL) originates from differentiating B cells, which undergo extensive epigenetic programming. This poses the challenge to precisely determine the epigenomic ground state of the cell-of-origin in order to identify CLL-specific epigenetic aberrations. METHODS: We developed a linear regression model, methylome-based cell-of-origin modeling (Methyl-COOM), to map the cell-of-origin for individual CLL patients based on the continuum of epigenomic changes during normal B cell differentiation. RESULTS: Methyl-COOM accurately maps the cell-of-origin of CLL and identifies CLL-specific aberrant DNA methylation events that are not confounded by physiologic epigenetic B cell programming. Furthermore, Methyl-COOM unmasks abnormal action of transcription factors, altered super-enhancer activities, and aberrant transcript expression in CLL. Among the aberrantly regulated transcripts were many genes that have previously been implicated in T cell biology. Flow cytometry analysis of these markers confirmed their aberrant expression on malignant B cells at the protein level. CONCLUSIONS: Methyl-COOM analysis of CLL identified disease-specific aberrant gene regulation. The aberrantly expressed genes identified in this study might play a role in immune-evasion in CLL and might serve as novel targets for immunotherapy approaches. In summary, we propose a novel framework for in silico modeling of reference DNA methylomes and for the identification of cancer-specific epigenetic changes, a concept that can be broadly applied to other human malignancies.


Assuntos
Linhagem da Célula , Epigenoma , Leucemia Linfocítica Crônica de Células B/genética , Modelos Genéticos , Linfócitos B/citologia , Linfócitos B/metabolismo , Diferenciação Celular , Hematopoiese Clonal , Elementos Facilitadores Genéticos , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Transcrição , Transcriptoma
19.
Nucleic Acids Res ; 48(7): 3496-3512, 2020 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-32107550

RESUMO

Aberrant Notch signaling plays a pivotal role in T-cell acute lymphoblastic leukemia (T-ALL) and chronic lymphocytic leukemia (CLL). Amplitude and duration of the Notch response is controlled by ubiquitin-dependent proteasomal degradation of the Notch1 intracellular domain (NICD1), a hallmark of the leukemogenic process. Here, we show that HDAC3 controls NICD1 acetylation levels directly affecting NICD1 protein stability. Either genetic loss-of-function of HDAC3 or nanomolar concentrations of HDAC inhibitor apicidin lead to downregulation of Notch target genes accompanied by a local reduction of histone acetylation. Importantly, an HDAC3-insensitive NICD1 mutant is more stable but biologically less active. Collectively, these data show a new HDAC3- and acetylation-dependent mechanism that may be exploited to treat Notch1-dependent leukemias.


Assuntos
Histona Desacetilases/metabolismo , Leucemia/metabolismo , Receptor Notch1/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Humanos , Leucemia/enzimologia , Lisina/metabolismo , Camundongos , Mutação , Peptídeos Cíclicos/farmacologia , Estabilidade Proteica , Receptor Notch1/química , Receptor Notch1/genética
20.
Haematologica ; 105(5): 1379-1390, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31467127

RESUMO

To identify genomic alterations contributing to the pathogenesis of high-risk chronic lymphocytic leukemia (CLL) beyond the well-established role of TP53 aberrations, we comprehensively analyzed 75 relapsed/refractory and 71 treatment-naïve high-risk cases from prospective clinical trials by single nucleotide polymorphism arrays and targeted next-generation sequencing. Increased genomic complexity was a hallmark of relapsed/refractory and treatment-naïve high-risk CLL. In relapsed/refractory cases previously exposed to the selective pressure of chemo(immuno)therapy, gain(8)(q24.21) and del(9)(p21.3) were particularly enriched. Both alterations affect key regulators of cell-cycle progression, namely MYC and CDKN2A/B While homozygous CDKN2A/B loss has been directly associated with Richter transformation, we did not find this association for heterozygous loss of CDKN2A/B Gains in 8q24.21 were either focal gains in a MYC enhancer region or large gains affecting the MYC locus, but only the latter type was highly enriched in relapsed/refractory CLL (17%). In addition to a high frequency of NOTCH1 mutations (23%), we found recurrent genetic alterations in SPEN (4% mutated), RBPJ (8% deleted) and SNW1 (8% deleted), all affecting a protein complex that represses transcription of NOTCH1 target genes. We investigated the functional impact of these alterations on HES1, DTX1 and MYC gene transcription and found derepression of these NOTCH1 target genes particularly with SPEN mutations. In summary, we provide new insights into the genomic architecture of high-risk CLL, define novel recurrent DNA copy number alterations and refine knowledge on del(9p), gain(8q) and alterations affecting NOTCH1 signaling. This study was registered at ClinicalTrials.gov with number NCT01392079.


Assuntos
Leucemia Linfocítica Crônica de Células B , Receptor Notch1/genética , Ciclo Celular , Genômica , Humanos , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...