Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2313037, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810365

RESUMO

Light-emitting diodes in the UV-C spectral range (UV-C LEDs) can potentially replace bulky and toxic mercury lamps in a wide range of applications including sterilization and water purification. Several obstacles still limit the efficiencies of UV-C LEDs. Devices in flip-chip geometry suffer from a huge difference in the work functions between the p-AlGaN and high-reflective Al mirrors, whereas the absence of UV-C transparent current spreading layers limits the development of UV-C LEDs in standard geometry. Here it is demonstrated that transfer-free graphene implemented directly onto the p-AlGaN top layer by a plasma enhanced chemical vapor deposition approach enables highly efficient 275 nm UV-C LEDs in both, flip-chip and standard geometry. In flip-chip geometry, the graphene acts as a contact interlayer between the Al-mirror and the p-AlGaN enabling an external quantum efficiency (EQE) of 9.5% and a wall-plug efficiency (WPE) of 5.5% at 8 V. Graphene combined with a ≈1 nm NiOx support layer allows a turn-on voltage <5 V. In standard geometry graphene acts as a current spreading layer on a length scale up to 1 mm. These top-emitting devices exhibit a EQE of 2.1% at 8.7 V and a WPE of 1.1%.

2.
ACS Appl Mater Interfaces ; 14(30): 35184-35193, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35852455

RESUMO

A promising strategy toward ultrathin, sensitive photodetectors is the combination of a photoactive semiconducting transition-metal dichalcogenide (TMDC) monolayer like MoS2 with highly conductive graphene. Such devices often exhibit a complex and contradictory photoresponse as incident light can trigger both photoconductivity and photoinduced desorption of molecules from the surface. Here, we use metal-organic chemical vapor deposition (MOCVD) to directly grow MoS2 on top of graphene that is deposited on a sapphire wafer via chemical vapor deposition (CVD) for realizing graphene-MoS2 photodetectors. Two-color optical pump-electrical probe experiments allow for separation of light-induced carrier transfer across the graphene-MoS2 heterointerface from adsorbate-induced effects. We demonstrate that adsorbates strongly modify both magnitude and sign of the photoconductivity. This is attributed to a change of the graphene doping from p- to n-type in case adsorbates are being desorbed, while in either case, photogenerated electrons are transferred from MoS2 to graphene. This nondestructive probing method sheds light on the charge carrier transfer mechanisms and the role of adsorbates in two-dimensional (2D) heterostructure photodetectors.

3.
Materials (Basel) ; 15(6)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35329655

RESUMO

Graphene combines high conductivity (sheet resistance down to a few hundred Ω/sq and even less) with high transparency (>90%) and thus exhibits a huge application potential as a transparent conductive electrode in gallium nitride (GaN)-based light-emitting diodes (LEDs), being an economical alternative to common indium-based solutions. Here, we present an overview of the state-of-the-art graphene-based transparent conductive electrodes in GaN-based LEDs. The focus is placed on the manufacturing progress and the resulting properties of the fabricated devices. Transferred as well as directly grown graphene layers are considered. We discuss the impact of graphene-based transparent conductive electrodes on current spreading and contact resistance, and reveal future challenges and perspectives on the use of graphene in GaN-based LEDs.

4.
Sci Rep ; 10(1): 12938, 2020 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737382

RESUMO

The integration of graphene into CMOS compatible Ge technology is in particular attractive for optoelectronic devices in the infrared spectral range. Since graphene transfer from metal substrates has detrimental effects on the electrical properties of the graphene film and moreover, leads to severe contamination issues, direct growth of graphene on Ge is highly desirable. In this work, we present recipes for a direct growth of graphene on Ge via thermal chemical vapor deposition (TCVD) and plasma-enhanced chemical vapor deposition (PECVD). We demonstrate that the growth temperature can be reduced by about 200 °C in PECVD with respect to TCVD, where usually growth occurs close to the melting point of Ge. For both, TCVD and PECVD, hexagonal and elongated morphology is observed on Ge(100) and Ge(110), respectively, indicating the dominant role of substrate orientation on the shape of graphene grains. Interestingly, Raman data indicate a compressive strain of ca. - 0.4% of the graphene film fabricated by TCVD, whereas a tensile strain of up to + 1.2% is determined for graphene synthesized via PECVD, regardless the substrate orientation. Supported by Kelvin probe force measurements, we suggest a mechanism that is responsible for graphene formation on Ge and the resulting strain in TCVD and PECVD.

5.
RSC Adv ; 8(73): 42073-42079, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-35558770

RESUMO

We report on the time-dependent influence of atmospheric species on the electrical properties of functionalized graphene sheets (FGSs). When exposed to laboratory air, FGSs exhibit a significant, irreversible decrease in electrical conductance with time, strongly depending on the oxygen content of the FGSs. To separate the roles of charge carrier density and mobility in this aging process, we performed electron transport measurements using a back-gate field-effect transistor architecture. Investigating the position of the Dirac point under different atmospheres, we found that adsorbed atmospheric species result in pronounced p-doping, which - on a short time scale - can be reversed under nitrogen atmosphere. However, on a time scale of several days, the resistance increases irreversibly, while the Dirac point voltage remains constant. From these experiments, we conclude that the aging of FGSs is related to the chemisorption of atmospheric species leading to enhanced carrier scattering due to an increasing amount of sp3- regions and thus to a reduced charge carrier mobility.

6.
Nano Lett ; 11(9): 3543-9, 2011 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-21848299

RESUMO

We studied the local voltage drop in functionalized graphene sheets of subµm size under external bias conditions by Kelvin probe force microscopy. Using this noninvasive experimental approach, we measured ohmic current-voltage characteristics and an intrinsic conductivity of about 3.7 × 10(5) S/m corresponding to a sheet resistance of 2.7 kΩ/sq under ambient conditions for graphene produced via thermal reduction of graphite oxide. The contact resistivity between functionalized graphene and metal electrode was found to be <6.3 × 10(-7) Ωcm(2).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...