Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS Pathog ; 19(12): e1011814, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38039338

RESUMO

Single amino acid changes in the parasite protein Kelch13 (K13) result in reduced susceptibility of P. falciparum parasites to artemisinin and its derivatives (ART). Recent work indicated that K13 and other proteins co-localising with K13 (K13 compartment proteins) are involved in the endocytic uptake of host cell cytosol (HCCU) and that a reduction in HCCU results in reduced susceptibility to ART. HCCU is critical for parasite survival but is poorly understood, with the K13 compartment proteins among the few proteins so far functionally linked to this process. Here we further defined the composition of the K13 compartment by analysing more hits from a previous BioID, showing that MyoF and MCA2 as well as Kelch13 interaction candidate (KIC) 11 and 12 are found at this site. Functional analyses, tests for ART susceptibility as well as comparisons of structural similarities using AlphaFold2 predictions of these and previously identified proteins showed that vesicle trafficking and endocytosis domains were frequent in proteins involved in resistance or endocytosis (or both), comprising one group of K13 compartment proteins. While this strengthened the link of the K13 compartment to endocytosis, many proteins of this group showed unusual domain combinations and large parasite-specific regions, indicating a high level of taxon-specific adaptation of this process. Another group of K13 compartment proteins did not influence endocytosis or ART susceptibility and lacked detectable vesicle trafficking domains. We here identified the first protein of this group that is important for asexual blood stage development and showed that it likely is involved in invasion. Overall, this work identified novel proteins functioning in endocytosis and at the K13 compartment. Together with comparisons of structural predictions it provides a repertoire of functional domains at the K13 compartment that indicate a high level of adaption of endocytosis in malaria parasites.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Animais , Antimaláricos/farmacologia , Plasmodium falciparum/metabolismo , Parasitos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Resistência a Medicamentos , Malária Falciparum/parasitologia , Mutação
3.
Cell Syst ; 14(1): 9-23.e7, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36657393

RESUMO

Taxon-specific proteins are key determinants defining the biology of all organisms and represent prime drug targets in pathogens. However, lacking comparability with proteins in other lineages makes them particularly difficult to study. In malaria parasites, this is exacerbated by technical limitations. Here, we analyzed the cellular location, essentiality, function, and, in selected cases, interactome of all unknown non-secretory proteins encoded on an entire P. falciparum chromosome. The nucleus was the most common localization, indicating that it is a hotspot of parasite-specific biology. More in-depth functional studies with four proteins revealed essential roles in DNA replication and mitosis. The mitosis proteins defined a possible orphan complex and a highly diverged complex needed for spindle-kinetochore connection. Structure-function comparisons indicated that the taxon-specific proteins evolved by different mechanisms. This work demonstrates the feasibility of gene-by-gene screens to elucidate the biology of malaria parasites and reveal critical parasite-specific processes of interest as drug targets.


Assuntos
Malária , Plasmodium falciparum , Humanos , Plasmodium falciparum/genética , Cromossomos Humanos Par 3 , Cinetocoros , Mitose
4.
mBio ; 14(1): e0331822, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36625655

RESUMO

Mature gametocytes of Plasmodium falciparum display a banana (falciform) shape conferred by a complex array of subpellicular microtubules (SPMT) associated with the inner membrane complex (IMC). Microtubule-associated proteins (MAPs) define MT populations and modulate interaction with pellicular components. Several MAPs have been identified in Toxoplasma gondii, and homologues can be found in the genomes of Plasmodium species, but the function of these proteins for asexual and sexual development of malaria parasites is still unknown. Here, we identified a novel subpellicular MAP, termed SPM3, that is conserved within the genus Plasmodium, especially within the subgenus Laverania, but absent in other Apicomplexa. Conditional knockdown and targeted gene disruption of Pfspm3 in Plasmodium falciparum cause severe morphological defects during gametocytogenesis, leading to round, nonfalciform gametocytes with an aberrant SPMT pattern. In contrast, Pbspm3 knockout in Plasmodium berghei, a species with round gametocytes, caused no defect in gametocytogenesis, but sporozoites displayed an aberrant motility and a dramatic defect in invasion of salivary glands, leading to a decreased efficiency in transmission. Electron microscopy revealed a dissociation of the SPMT from the IMC in Pbspm3 knockout parasites, suggesting a function of SPM3 in anchoring MTs to the IMC. Overall, our results highlight SPM3 as a pellicular component with essential functions for malaria parasite transmission. IMPORTANCE A key structural feature driving the transition between different life cycle stages of the malaria parasite is the unique three-membrane pellicle, consisting of the parasite plasma membrane (PPM) and a double membrane structure underlying the PPM termed the inner membrane complex (IMC). Additionally, there are numerous linearly arranged intramembranous particles (IMPs) linked to the IMC, which likely link the IMC to the subpellicular microtubule cytoskeleton. Here, we identified, localized, and characterized a novel subpellicular microtubule-associated protein unique to the genus Plasmodium. The knockout of this protein in the human-pathogenic species P. falciparum resulted in malformed gametocytes and aberrant microtubules. We confirmed the microtubule association in the P. berghei rodent malaria homologue and show that its knockout results in a perturbed microtubule architecture, aberrant sporozoite motility, and decreased transmission efficiency.


Assuntos
Malária , Parasitos , Animais , Humanos , Parasitos/metabolismo , Proteínas Associadas aos Microtúbulos , Plasmodium falciparum/metabolismo , Plasmodium berghei , Esporozoítos , Proteínas de Protozoários/metabolismo
5.
J Biol Chem ; 298(9): 102360, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35961464

RESUMO

Malaria is responsible for hundreds of thousands of deaths every year. The lack of an effective vaccine and the global spread of multidrug resistant parasites hampers the fight against the disease and underlines the need for new antimalarial drugs. Central to the pathogenesis of malaria is the proliferation of Plasmodium parasites within human erythrocytes. Parasites invade erythrocytes via a coordinated sequence of receptor-ligand interactions between the parasite and the host cell. Posttranslational modifications such as protein phosphorylation are known to be key regulators in this process and are mediated by protein kinases. For several parasite kinases, including the Plasmodium falciparum glycogen synthase kinase 3 (PfGSK3), inhibitors have been shown to block erythrocyte invasion. Here, we provide an assessment of PfGSK3 function by reverse genetics. Using targeted gene disruption, we show the active gene copy, PfGSK3ß, is not essential for asexual blood stage proliferation, although it modulates efficient erythrocyte invasion. We found functional inactivation leads to a 69% decreased growth rate and confirmed this growth defect by rescue experiments with wildtype and catalytically inactive mutants. Functional knockout of PfGSK3ß does not lead to transcriptional upregulation of the second copy of PfGSK3. We further analyze expression, localization, and function of PfGSK3ß during gametocytogenesis using a parasite line allowing conditional induction of sexual commitment. We demonstrate PfGSK3ß-deficient gametocytes show a strikingly malformed morphology leading to the death of parasites in later stages of gametocyte development. Taken together, these findings are important for our understanding and the development of PfGSK3 as an antimalarial target.


Assuntos
Antimaláricos , Malária Falciparum , Antimaláricos/farmacologia , Eritrócitos/metabolismo , Quinase 3 da Glicogênio Sintase/genética , Humanos , Ligantes , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
6.
mBio ; 13(2): e0062322, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35404116

RESUMO

Membrane transport proteins perform crucial roles in cell physiology. The obligate intracellular parasite Plasmodium falciparum, an agent of human malaria, relies on membrane transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, exchange of metabolites between organelles, and generation and maintenance of transmembrane electrochemical gradients for its growth and replication within human erythrocytes. Despite their importance for Plasmodium cellular physiology, the functional roles of a number of membrane transport proteins remain unclear, which is particularly true for orphan membrane transporters that have no or limited sequence homology to transporter proteins in other evolutionary lineages. Therefore, in the current study, we applied endogenous tagging, targeted gene disruption, conditional knockdown, and knockout approaches to investigate the subcellular localization and essentiality of six membrane transporters during intraerythrocytic development of P. falciparum parasites. They are localized at different subcellular structures-the food vacuole, the apicoplast, and the parasite plasma membrane-and four out of the six membrane transporters are essential during asexual development. Additionally, the plasma membrane resident transporter 1 (PMRT1; PF3D7_1135300), a unique Plasmodium-specific plasma membrane transporter, was shown to be essential for gametocytogenesis and functionally conserved within the genus Plasmodium. Overall, we reveal the importance of four orphan transporters to blood stage P. falciparum development, which have diverse intracellular localizations and putative functions. IMPORTANCE Plasmodium falciparum-infected erythrocytes possess multiple compartments with designated membranes. Transporter proteins embedded in these membranes not only facilitate movement of nutrients, metabolites, and other molecules between these compartments, but also are common therapeutic targets and can confer antimalarial drug resistance. Orphan membrane transporters in P. falciparum without sequence homology to transporters in other evolutionary lineages and divergent from host transporters may constitute attractive targets for novel intervention approaches. Here, we localized six of these putative transporters at different subcellular compartments and probed their importance during asexual parasite growth by using reverse genetic approaches. In total, only two candidates turned out to be dispensable for the parasite, highlighting four candidates as putative targets for therapeutic interventions. This study reveals the importance of several orphan transporters to blood stage P. falciparum development.


Assuntos
Malária Falciparum , Parasitos , Plasmodium , Animais , Membrana Celular/metabolismo , Humanos , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Parasitos/metabolismo , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
7.
Cell Host Microbe ; 29(12): 1774-1787.e9, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34863371

RESUMO

Intraerythrocytic malaria parasites proliferate bounded by a parasitophorous vacuolar membrane (PVM). The PVM contains nutrient permeable channels (NPCs) conductive to small molecules, but their relevance for parasite growth for individual metabolites is largely untested. Here we show that growth-relevant levels of major carbon and energy sources pass through the NPCs. Moreover, we find that NPCs are a gate for several antimalarial drugs, highlighting their permeability properties as a critical factor for drug design. Looking into NPC-dependent amino acid transport, we find that amino acid shortage is a reason for the fitness cost in artemisinin-resistant (ARTR) parasites and provide evidence that NPC upregulation to increase amino acids acquisition is a mechanism of ARTR parasites in vitro and in human infections to compensate this fitness cost. Hence, the NPCs are important for nutrient and drug access and reveal amino acid deprivation as a critical constraint in ARTR parasites.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Malária , Nutrientes , Parasitos , Vacúolos , Aminoácidos , Animais , Desenho de Fármacos , Exercício Físico , Humanos , Regulação para Cima
8.
mSphere ; 6(6): e0074321, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34756057

RESUMO

During the symptomatic human blood phase, malaria parasites replicate within red blood cells. Parasite proliferation relies on the uptake of nutrients, such as amino acids, from the host cell and blood plasma, requiring transport across multiple membranes. Amino acids are delivered to the parasite through the parasite-surrounding vacuolar compartment by specialized nutrient-permeable channels of the erythrocyte membrane and the parasitophorous vacuole membrane (PVM). However, further transport of amino acids across the parasite plasma membrane (PPM) is currently not well characterized. In this study, we focused on a family of Apicomplexan amino acid transporters (ApiATs) that comprises five members in Plasmodium falciparum. First, we localized four of the P. falciparum ApiATs (PfApiATs) at the PPM using endogenous green fluorescent protein (GFP) tagging. Next, we applied reverse genetic approaches to probe into their essentiality during asexual replication and gametocytogenesis. Upon inducible knockdown and targeted gene disruption, a reduced asexual parasite proliferation was detected for PfApiAT2 and PfApiAT4. Functional inactivation of individual PfApiATs targeted in this study had no effect on gametocyte development. Our data suggest that individual PfApiATs are partially redundant during asexual in vitro proliferation and fully redundant during gametocytogenesis of P. falciparum parasites. IMPORTANCE Malaria parasites live and multiply inside cells. To facilitate their extremely fast intracellular proliferation, they hijack and transform their host cells. This also requires the active uptake of nutrients, such as amino acids, from the host cell and the surrounding environment through various membranes that are the consequence of the parasite's intracellular lifestyle. In this paper, we focus on a family of putative amino acid transporters termed ApiAT. We show expression and localization of four transporters in the parasite plasma membrane of Plasmodium falciparum-infected erythrocytes that represent one interface of the pathogen to its host cell. We probed into the impact of functional inactivation of individual transporters on parasite growth in asexual and sexual blood stages of P. falciparum and reveal that only two of them show a modest but significant reduction in parasite proliferation but no impact on gametocytogenesis, pointing toward dispensability within this transporter family.


Assuntos
Sistemas de Transporte de Aminoácidos/metabolismo , Membrana Celular/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/metabolismo , Eritrócitos/parasitologia , Proteínas de Fluorescência Verde/metabolismo , Interações Hospedeiro-Parasita , Humanos , Malária Falciparum , Plasmodium falciparum/genética , Proteínas de Protozoários/genética
9.
Science ; 367(6473): 51-59, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896710

RESUMO

Artemisinin and its derivatives (ARTs) are the frontline drugs against malaria, but resistance is jeopardizing their effectiveness. ART resistance is mediated by mutations in the parasite's Kelch13 protein, but Kelch13 function and its role in resistance remain unclear. In this study, we identified proteins located at a Kelch13-defined compartment. Inactivation of eight of these proteins, including Kelch13, rendered parasites resistant to ART, revealing a pathway critical for resistance. Functional analysis showed that these proteins are required for endocytosis of hemoglobin from the host cell. Parasites with inactivated Kelch13 or a resistance-conferring Kelch13 mutation displayed reduced hemoglobin endocytosis. ARTs are activated by degradation products of hemoglobin. Hence, reduced activity of Kelch13 and its interactors diminishes hemoglobin endocytosis and thereby ART activation, resulting in parasite resistance.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Resistência a Medicamentos/genética , Endocitose/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Hemoglobinas/metabolismo , Humanos , Malária Falciparum/tratamento farmacológico , Mutação
10.
Microorganisms ; 8(2)2020 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-31991814

RESUMO

Changes in the erythrocyte membrane induced by Plasmodium falciparum invasion allow cytoadhesion of infected erythrocytes (IEs) to the host endothelium, which can lead to severe complications. Binding to endothelial cell receptors (ECRs) is mainly mediated by members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family, encoded by var genes. Malaria infection causes several common symptoms, with fever being the most apparent. In this study, the effects of febrile conditions on cytoadhesion of predominately knobless erythrocytes infected with the laboratory isolate IT4 to chondroitin-4-sulfate A (CSA), intercellular adhesion molecule 1 (ICAM-1), and CD36 were investigated. IEs enriched for binding to CSA at 40 °C exhibited significantly increased binding capacity relative to parasites enriched at 37 °C. This interaction was due to increased var2csa expression and trafficking of the corresponding PfEMP1 to the IE surface as well as to a selection of knobby IEs. Furthermore, the enrichment of IEs to ICAM-1 at 40 °C also led to selection of knobby IEs over knobless IEs, whereas enrichment on CD36 did not lead to a selection. In summary, these findings demonstrate that knobs are crucial for parasitic survival in the host, especially during fever episodes, and thus, that selection pressure on the formation of knobs could be controlled by the host.

11.
PLoS Biol ; 17(9): e3000473, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31568532

RESUMO

Intracellular malaria parasites grow in a vacuole delimited by the parasitophorous vacuolar membrane (PVM). This membrane fulfils critical roles for survival of the parasite in its intracellular niche such as in protein export and nutrient acquisition. Using a conditional knockout (KO), we here demonstrate that the abundant integral PVM protein exported protein 1 (EXP1) is essential for parasite survival but that this is independent of its previously postulated function as a glutathione S-transferase (GST). Patch-clamp experiments indicated that EXP1 is critical for the nutrient-permeable channel activity at the PVM. Loss of EXP1 abolished the correct localisation of EXP2, a pore-forming protein required for the nutrient-permeable channel activity and protein export at the PVM. Unexpectedly, loss of EXP1 affected only the nutrient-permeable channel activity of the PVM but not protein export. Parasites with low levels of EXP1 became hypersensitive to low nutrient conditions, indicating that EXP1 indeed is needed for nutrient uptake and experimentally confirming the long-standing hypothesis that the channel activity measured at the PVM is required for parasite nutrient acquisition. Hence, EXP1 is specifically required for the functional expression of EXP2 as the nutrient-permeable channel and is critical for the metabolite supply of malaria parasites.


Assuntos
Antígenos de Protozoários/metabolismo , Plasmodium falciparum/metabolismo , Aminoácidos/metabolismo , Eritrócitos/parasitologia , Técnicas de Inativação de Genes , Glutationa Transferase/metabolismo , Interações Hospedeiro-Parasita , Nutrientes/metabolismo , Plasmodium falciparum/genética , Vacúolos/metabolismo
12.
Int J Med Microbiol ; 308(1): 13-24, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28784333

RESUMO

Malaria blood stage parasites develop within red blood cells where they are contained in a vacuolar compartment known as the parasitophorous vacuole (PV). This compartment holds a key role in the interaction of the parasite with its host cell. However, the proteome of this compartment has so far not been comprehensively analysed. Here we used BioID in asexual blood stages of the most virulent human malaria parasite Plasmodium falciparum to identify new proteins of the PV. The resulting proteome contained many of the already known PV proteins and validation by GFP-knock-in of 10 previously in P. falciparum uncharacterised hits revealed 5 new PV proteins and two with a partial PV localisation. This included proteins peripherally attached to the inner face of the PV membrane as well as proteins anchored in the parasite plasma membrane that protrude into the PV. Using selectable targeted gene disruption we generated mutants for 2 of the 10 candidates. In contrast we could not select parasites with disruptions for another 3 candidates, strongly suggesting that they are important for parasite growth. Interestingly, one of these included the orthologue of UIS2, a protein previously proposed to regulate protein translation in the parasite cytoplasm but here shown to be an essential PV protein. This work extends the number of known PV proteins and provides a starting point for further functional analyses of this compartment.


Assuntos
Plasmodium falciparum/química , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Vacúolos/metabolismo , Biotinilação , Membrana Celular/metabolismo , Eritrócitos/parasitologia , Técnicas de Introdução de Genes , Humanos , Membranas Intracelulares/metabolismo , Estágios do Ciclo de Vida , Mutação , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Proteoma/genética , Proteínas de Protozoários/genética , Vacúolos/química , Vacúolos/parasitologia
13.
Nat Methods ; 14(4): 450-456, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28288121

RESUMO

Current systems to study essential genes in the human malaria parasite Plasmodium falciparum are often inefficient and time intensive, and they depend on the genetic modification of the target locus, a process hindered by the low frequency of integration of episomal DNA into the genome. Here, we introduce a method, termed selection-linked integration (SLI), to rapidly select for genomic integration. SLI allowed us to functionally analyze targets at the gene and protein levels, thus permitting mislocalization of native proteins, a strategy known as knock sideways, floxing to induce diCre-based excision of genes and knocking in altered gene copies. We demonstrated the power and robustness of this approach by validating it for more than 12 targets, including eight essential ones. We also localized and inducibly inactivated Kelch13, the protein associated with artemisinin resistance. We expect this system to be widely applicable for P. falciparum and other organisms with limited genetic tractability.


Assuntos
Técnicas Genéticas , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Artemisininas/farmacologia , Resistência a Medicamentos/efeitos dos fármacos , Resistência a Medicamentos/genética , Teste de Complementação Genética , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
14.
PLoS Pathog ; 12(5): e1005618, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27168322

RESUMO

Protein export is central for the survival and virulence of intracellular P. falciparum blood stage parasites. To reach the host cell, exported proteins cross the parasite plasma membrane (PPM) and the parasite-enclosing parasitophorous vacuole membrane (PVM), a process that requires unfolding, suggestive of protein translocation. Components of a proposed translocon at the PVM termed PTEX are essential in this phase of export but translocation activity has not been shown for the complex and questions have been raised about its proposed membrane pore component EXP2 for which no functional data is available in P. falciparum. It is also unclear how PTEX mediates trafficking of both, soluble as well as transmembrane proteins. Taking advantage of conditionally foldable domains, we here dissected the translocation events in the parasite periphery, showing that two successive translocation steps are needed for the export of transmembrane proteins, one at the PPM and one at the PVM. Our data provide evidence that, depending on the length of the C-terminus of the exported substrate, these steps occur by transient interaction of the PPM and PVM translocon, similar to the situation for protein transport across the mitochondrial membranes. Remarkably, we obtained constructs of exported proteins that remained arrested in the process of being translocated across the PVM. This clogged the translocation pore, prevented the export of all types of exported proteins and, as a result, inhibited parasite growth. The substrates stuck in translocation were found in a complex with the proposed PTEX membrane pore component EXP2, suggesting a role of this protein in translocation. These data for the first time provide evidence for EXP2 to be part of a translocating entity, suggesting that PTEX has translocation activity and provide a mechanistic framework for the transport of soluble as well as transmembrane proteins from the parasite boundary into the host cell.


Assuntos
Malária Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Transporte Proteico/fisiologia , Proteínas de Protozoários/metabolismo , Western Blotting , Eritrócitos/parasitologia , Imunofluorescência , Humanos , Imunoprecipitação
15.
PLoS Pathog ; 9(8): e1003546, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23950716

RESUMO

Malaria blood stage parasites export a large number of proteins into their host erythrocyte to change it from a container of predominantly hemoglobin optimized for the transport of oxygen into a niche for parasite propagation. To understand this process, it is crucial to know which parasite proteins are exported into the host cell. This has been aided by the PEXEL/HT sequence, a five-residue motif found in many exported proteins, leading to the prediction of the exportome. However, several PEXEL/HT negative exported proteins (PNEPs) indicate that this exportome is incomplete and it remains unknown if and how many further PNEPs exist. Here we report the identification of new PNEPs in the most virulent malaria parasite Plasmodium falciparum. This includes proteins with a domain structure deviating from previously known PNEPs and indicates that PNEPs are not a rare exception. Unexpectedly, this included members of the MSP-7 related protein (MSRP) family, suggesting unanticipated functions of MSRPs. Analyzing regions mediating export of selected new PNEPs, we show that the first 20 amino acids of PNEPs without a classical N-terminal signal peptide are sufficient to promote export of a reporter, confirming the concept that this is a shared property of all PNEPs of this type. Moreover, we took advantage of newly found soluble PNEPs to show that this type of exported protein requires unfolding to move from the parasitophorous vacuole (PV) into the host cell. This indicates that soluble PNEPs, like PEXEL/HT proteins, are exported by translocation across the PV membrane (PVM), highlighting protein translocation in the parasite periphery as a general means in protein export of malaria parasites.


Assuntos
Membrana Celular/metabolismo , Plasmodium falciparum/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Proteínas de Protozoários/metabolismo , Animais , Membrana Celular/genética , Camundongos , Plasmodium falciparum/genética , Transporte Proteico/fisiologia , Proteínas de Protozoários/genética
16.
Mem Inst Oswaldo Cruz ; 106(4): 390-3, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21739024

RESUMO

Abdominal angiostrongyliasis is a potentially fatal zoonotic disease with a broad geographical distribution throughout Central and South America. This study assessed the performance of Angiostrongylus costaricensis eggs as the antigen in an indirect immunofluorescence assay for the determination of parasite-specific IgG and IgG1 antibodies. For prevalence studies, an IgG antibody titre ≥ 16 was identified as the diagnostic threshold with the best performance, providing 93.7% sensitivity and 84.6% specificity. Cross reactivity was evaluated with 65 additional samples from patients with other known parasitic infections. Cross reactivity was observed only in samples from individuals infected with Strongyloides stercoralis. For clinical diagnosis, we recommend the determination of IgG only as a screening test. IgG1 determination may be used to increase the specificity of the results for patients with a positive screening test.


Assuntos
Angiostrongylus/imunologia , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos , Imunoglobulina G/imunologia , Infecções por Strongylida/diagnóstico , Abdome/parasitologia , Animais , Técnica Indireta de Fluorescência para Anticorpo/métodos , Humanos , Óvulo/imunologia , Sensibilidade e Especificidade
17.
Mem. Inst. Oswaldo Cruz ; 106(4): 390-393, June 2011. tab
Artigo em Inglês | LILACS | ID: lil-592179

RESUMO

Abdominal angiostrongyliasis is a potentially fatal zoonotic disease with a broad geographical distribution throughout Central and South America. This study assessed the performance of Angiostrongylus costaricensis eggs as the antigen in an indirect immunofluorescence assay for the determination of parasite-specific IgG and IgG1 antibodies. For prevalence studies, an IgG antibody titre > 16 was identified as the diagnostic threshold with the best performance, providing 93.7 percent sensitivity and 84.6 percent specificity. Cross reactivity was evaluated with 65 additional samples from patients with other known parasitic infections. Cross reactivity was observed only in samples from individuals infected with Strongyloides stercoralis. For clinical diagnosis, we recommend the determination of IgG only as a screening test. IgG1 determination may be used to increase the specificity of the results for patients with a positive screening test.


Assuntos
Animais , Humanos , Angiostrongylus/imunologia , Anticorpos Anti-Helmínticos/sangue , Antígenos de Helmintos , Imunoglobulina G/imunologia , Infecções por Strongylida , Abdome , Técnica Indireta de Fluorescência para Anticorpo/métodos , Óvulo/imunologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...