Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 230
Filtrar
3.
Biochem Cell Biol ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38640502

RESUMO

I was fortunate enough to start my career at what was the dawn of modern-day molecular biology and to apply it to an important health problem. While my early work focused on fundamental science, the desire to understand human disease better and to find practical applications for research discoveries resulted, over the following decades, in creating a stream of translational research directed specifically towards epithelial cancers. This could only have been possible through multiple collaborations. This type of team science would eventually become a hallmark of my career. With the development of higher throughput molecular techniques, the pace of research and discovery have quickened, and the concept of personalized medicine based on genomics is now coming to fruition. I hope my legacy will not just reflect my published works, but will also include the impact I have had on the development of the next generation of scientist and clinician scientists who inspired me with their dedication, knowledge and enthusiasm.

4.
Cancers (Basel) ; 16(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38254843

RESUMO

Ovarian cancer remains a significant challenge, especially in platinum-resistant cases where treatment options are limited. In this study, we investigated the potential of methylene blue (MB) as a metabolic therapy and complementary treatment approach for ovarian cancer. Our findings demonstrated a significant in vivo reduction in the proliferation of TOV112D-based ovarian-cell-line xenografts. In this preclinical study, which used a carboplatin-resistant ovarian cancer tumor model implanted into mice, MB-mediated metabolic therapy exhibited superior tumor slowdown compared to carboplatin treatment alone. This indicates, for the first time, MB's potential as an alternative or adjuvant treatment, especially for resistant cases. Our in vitro study on TOV112D and ARPE-19 sheds light on the impact of such an MB-based metabolic therapy on mitochondrial energetics (respiration and membrane potential). MB showed a modulatory role in the oxygen consumption rate and the mitochondrial membrane potential. These results revealed, for the first time, that MB specifically targets TOV112D mitochondria and probably induces cell apoptosis. The differential response of normal (ARPE-19) and cancer (TOV112D) cells to the MB treatment suggests potential alterations in cancer cell mitochondria, opening avenues for therapeutic approaches that target the mitochondria. Overall, our findings suggest the efficacy of MB as a possible treatment for ovarian cancer and provide valuable insights into the mechanisms underlying the efficacy of methylene blue metabolic therapy in ovarian cancer treatment.

5.
Nat Commun ; 14(1): 6505, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845213

RESUMO

High-grade serous ovarian carcinoma (HGSOC) is characterised by poor outcome and extreme chromosome instability (CIN). Therapies targeting centrosome amplification (CA), a key mediator of chromosome missegregation, may have significant clinical utility in HGSOC. However, the prevalence of CA in HGSOC, its relationship to genomic biomarkers of CIN and its potential impact on therapeutic response have not been defined. Using high-throughput multi-regional microscopy on 287 clinical HGSOC tissues and 73 cell lines models, here we show that CA through centriole overduplication is a highly recurrent and heterogeneous feature of HGSOC and strongly associated with CIN and genome subclonality. Cell-based studies showed that high-prevalence CA is phenocopied in ovarian cancer cell lines, and that high CA is associated with increased multi-treatment resistance; most notably to paclitaxel, the commonest treatment used in HGSOC. CA in HGSOC may therefore present a potential driver of tumour evolution and a powerful biomarker for response to standard-of-care treatment.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Centrossomo/metabolismo , Cistadenocarcinoma Seroso/genética
6.
Oncoimmunology ; 12(1): 2253642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37720689

RESUMO

In colorectal cancer liver metastases (CRLM), the density of tumor-infiltrating lymphocytes, the expression of class I major histocompatibility complex (MHC-I), and the pathological response to preoperative chemotherapy have been associated with oncological outcomes after complete resection. However, the prognostic significance of the heterogeneity of these features in patients with multiple CRLMs remains under investigation. We used a tissue microarray of 220 mismatch repair-gene proficient CRLMs resected in 97 patients followed prospectively to quantify CD3+ T cells and MHC-I by immunohistochemistry. Histopathological response to preoperative chemotherapy was assessed using standard scoring systems. We tested associations between clinical, immunological, and pathological features with oncologic outcomes. Overall, 29 patients (30.2%) had CRLMs homogeneous for CD3+ T cell infiltration and MHC-I. Patients with immune homogeneous compared to heterogeneous CRLMs had longer median time to recurrence (TTR) (30 vs. 12 months, p = .0018) and disease-specific survival (DSS) (not reached vs. 48 months, p = .0009). At 6 years, 80% of the patients with immune homogeneous CRLMs were still alive. Homogeneity of response to preoperative chemotherapy was seen in 60 (61.9%) and 69 (80.2%) patients according to different grading systems and was not associated with TTR or DSS. CD3 and MHC-I heterogeneity was independent of response to pre-operative chemotherapy and of other clinicopathological variables for their association with oncological outcomes. In patients with multiple CRLMs resected with curative intent, similar adaptive immune features seen across metastases could be more informative than pathological response to pre-operative chemotherapy in predicting oncological outcomes.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/cirurgia , Linfócitos do Interstício Tumoral
7.
Front Oncol ; 13: 1134763, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37124505

RESUMO

Background: Ovarian cancer (OC) is the deadliest gynecological cancer, often diagnosed at advanced stages. A fast and accurate diagnostic method for early-stage OC is needed. The tumor marker gangliosides, GD2 and GD3, exhibit properties that make them ideal potential diagnostic biomarkers, but they have never before been quantified in OC. We investigated the diagnostic utility of GD2 and GD3 for diagnosis of all subtypes and stages of OC. Methods: This retrospective study evaluated GD2 and GD3 expression in biobanked tissue and serum samples from patients with invasive epithelial OC, healthy donors, non-malignant gynecological conditions, and other cancers. GD2 and GD3 levels were evaluated in tissue samples by immunohistochemistry (n=299) and in two cohorts of serum samples by quantitative ELISA. A discovery cohort (n=379) showed feasibility of GD2 and GD3 quantitative ELISA for diagnosing OC, and a subsequent model cohort (n=200) was used to train and cross-validate a diagnostic model. Results: GD2 and GD3 were expressed in tissues of all OC subtypes and FIGO stages but not in surrounding healthy tissue or other controls. In serum, GD2 and GD3 were elevated in patients with OC. A diagnostic model that included serum levels of GD2+GD3+age was superior to the standard of care (CA125, p<0.001) in diagnosing OC and early-stage (I/II) OC. Conclusion: GD2 and GD3 expression was associated with high rates of selectivity and specificity for OC. A diagnostic model combining GD2 and GD3 quantification in serum had diagnostic power for all subtypes and all stages of OC, including early stage. Further research exploring the utility of GD2 and GD3 for diagnosis of OC is warranted.

8.
Front Oncol ; 13: 1111191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969007

RESUMO

Not all familial ovarian cancer (OC) cases are explained by pathogenic germline variants in known risk genes. A candidate gene approach involving DNA repair pathway genes was applied to identify rare recurring pathogenic variants in familial OC cases not associated with known OC risk genes from a population exhibiting genetic drift. Whole exome sequencing (WES) data of 15 OC cases from 13 families tested negative for pathogenic variants in known OC risk genes were investigated for candidate variants in 468 DNA repair pathway genes. Filtering and prioritization criteria were applied to WES data to select top candidates for further analyses. Candidates were genotyped in ancestry defined study groups of 214 familial and 998 sporadic OC or breast cancer (BC) cases and 1025 population-matched controls and screened for additional carriers in 605 population-matched OC cases. The candidate genes were also analyzed in WES data from 937 familial or sporadic OC cases of diverse ancestries. Top candidate variants in ERCC5, EXO1, FANCC, NEIL1 and NTHL1 were identified in 5/13 (39%) OC families. Collectively, candidate variants were identified in 7/435 (1.6%) sporadic OC cases and 1/566 (0.2%) sporadic BC cases versus 1/1025 (0.1%) controls. Additional carriers were identified in 6/605 (0.9%) OC cases. Tumour DNA from ERCC5, NEIL1 and NTHL1 variant carriers exhibited loss of the wild-type allele. Carriers of various candidate variants in these genes were identified in 31/937 (3.3%) OC cases of diverse ancestries versus 0-0.004% in cancer-free controls. The strategy of applying a candidate gene approach in a population exhibiting genetic drift identified new candidate OC predisposition variants in DNA repair pathway genes.

9.
Sci Rep ; 13(1): 3334, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849518

RESUMO

Epithelial ovarian cancer is the most lethal gynecological malignancy, owing notably to its high rate of therapy-resistant recurrence in spite of good initial response to chemotherapy. Although poly(ADP-ribose) polymerase inhibitors (PARPi) have shown promise for ovarian cancer treatment, extended therapy usually leads to acquired PARPi resistance. Here we explored a novel therapeutic option to counter this phenomenon, combining PARPi and inhibitors of nicotinamide phosphoribosyltransferase (NAMPT). Cell-based models of acquired PARPi resistance were created through an in vitro selection procedure. Using resistant cells, xenograft tumors were grown in immunodeficient mice, while organoid models were generated from primary patient tumor samples. Intrinsically PARPi-resistant cell lines were also selected for analysis. Our results show that treatment with NAMPT inhibitors effectively sensitized all in vitro models to PARPi. Adding nicotinamide mononucleotide, the resulting NAMPT metabolite, abrogated the therapy-induced cell growth inhibition, demonstrating the specificity of the synergy. Treatment with olaparib (PARPi) and daporinad (NAMPT inhibitor) depleted intracellular NAD+ , induced double-strand DNA breaks, and promoted apoptosis as monitored by caspase-3 cleavage. The two drugs were also synergistic in mouse xenograft models and clinically relevant patient-derived organoids. Therefore, in the context of PARPi resistance, NAMPT inhibition could offer a promising new option for ovarian cancer patients.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Animais , Camundongos , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Niacinamida , Neoplasias Ovarianas/tratamento farmacológico , Fosfatos de Dinucleosídeos
10.
Cancers (Basel) ; 15(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831403

RESUMO

Anticancer drugs have the lowest success rate of approval in drug development programs. Thus, preclinical assays that closely predict the clinical responses to drugs are of utmost importance in both clinical oncology and pharmaceutical research. 3D tumour models preserve the tumoral architecture and are cost- and time-efficient. However, the short-term longevity, limited throughput, and limitations of live imaging of these models have so far driven researchers towards less realistic tumour models such as monolayer cell cultures. Here, we present an open-space microfluidic drug screening platform that enables the formation, culture, and multiplexed delivery of several reagents to various 3D tumour models, namely cancer cell line spheroids and ex vivo primary tumour fragments. Our platform utilizes a microfluidic pixelated chemical display that creates isolated adjacent flow sub-units of reagents, which we refer to as fluidic 'pixels', over tumour models in a contact-free fashion. Up to nine different treatment conditions can be tested over 144 samples in a single experiment. We provide a proof-of-concept application by staining fixed and live tumour models with multiple cellular dyes. Furthermore, we demonstrate that the response of the tumour models to biological stimuli can be assessed using the platform. Upscaling the microfluidic platform to larger areas can lead to higher throughputs, and thus will have a significant impact on developing treatments for cancer.

11.
Genes (Basel) ; 14(2)2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36833203

RESUMO

FANCI was recently identified as a new candidate ovarian cancer (OC)-predisposing gene from the genetic analysis of carriers of FANCI c.1813C>T; p.L605F in OC families. Here, we aimed to investigate the molecular genetic characteristics of FANCI, as they have not been described in the context of cancer. We first investigated the germline genetic landscape of two sisters with OC from the discovery FANCI c.1813C>T; p.L605F family (F1528) to re-affirm the plausibility of this candidate. As we did not find other conclusive candidates, we then performed a candidate gene approach to identify other candidate variants in genes involved in the FANCI protein interactome in OC families negative for pathogenic variants in BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, and FANCI, which identified four candidate variants. We then investigated FANCI in high-grade serous ovarian carcinoma (HGSC) from FANCI c.1813C>T carriers and found evidence of loss of the wild-type allele in tumour DNA from some of these cases. The somatic genetic landscape of OC tumours from FANCI c.1813C>T carriers was investigated for mutations in selected genes, copy number alterations, and mutational signatures, which determined that the profiles of tumours from carriers were characteristic of features exhibited by HGSC cases. As other OC-predisposing genes such as BRCA1 and BRCA2 are known to increase the risk of other cancers including breast cancer, we investigated the carrier frequency of germline FANCI c.1813C>T in various cancer types and found overall more carriers among cancer cases compared to cancer-free controls (p = 0.007). In these different tumour types, we also identified a spectrum of somatic variants in FANCI that were not restricted to any specific region within the gene. Collectively, these findings expand on the characteristics described for OC cases carrying FANCI c.1813C>T; p.L605F and suggest the possible involvement of FANCI in other cancer types at the germline and/or somatic level.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi , Predisposição Genética para Doença , Neoplasias Ovarianas , Feminino , Humanos , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Genes BRCA2 , Biologia Molecular , Mutação , Neoplasias Ovarianas/genética
12.
J Ovarian Res ; 16(1): 14, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36642715

RESUMO

BACKGROUND: Resistance to chemotherapy continues to be a challenge when treating epithelial ovarian cancer (EOC), contributing to low patient survival rates. While CA125, the conventional EOC biomarker, has been useful in monitoring patients' response to therapy, there are no biomarkers used to predict treatment response prior to chemotherapy. Previous work in vitro showed that plasma gelsolin (pGSN) is highly expressed in chemoresistant EOC cell lines, where it is secreted in small extracellular vesicles (sEVs). Whether sEVs from tumour cells are secreted into the circulation of EOC patients and could be used to predict patient chemoresponsiveness is yet to be determined. This study aims to identify if sEV-pGSN in the circulation could be a predictive biomarker for chemoresistance in EOC. METHODS: Sandwich ELISA was used to measure pGSN concentrations from plasma samples of 96 EOC patients (primarily high grade serous EOC). sEVs were isolated using ExoQuick ULTRA and characterized using western blot, nanoparticle tracking analysis, and electron microscopy after which pGSN was measured from the sEVs. Patients were stratified as platinum sensitive or resistant groups based on first progression free interval (PFI) of 6 or 12 months. RESULTS: Total circulating pGSN was significantly decreased and sEV-pGSN increased in patients with a PFI ≤ 12 months (chemoresistant) compared to those with a PFI > 12 months (chemosensitive). The ratio of total pGSN to sEV-pGSN further differentiated these groups and was a strong predictive marker for chemoresistance (sensitivity: 73.91%, specificity: 72.46%). Predetermined CA125 was not different between chemosensitive and chemoresistant groups and was not predictive of chemoresponsiveness prior to treatment. When CA125 was combined with the ratio of total pGSN/sEV-pGSN, it was a significant predictor of chemoresponsiveness, but the test performance was not as robust as the total pGSN/sEV-pGSN alone. CONCLUSIONS: Total pGSN/sEV-pGSN was the best predictor of chemoresponsiveness prior to treatment, outperforming the individual biomarkers (CA125, total pGSN, and sEV-pGSN). This multianalyte predictor of chemoresponsiveness could help to inform physicians' treatment and follow up plan at the time of EOC diagnosis, thus improving patients' outcomes.


Assuntos
Vesículas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , Carcinoma Epitelial do Ovário , Gelsolina/uso terapêutico , Biomarcadores , Neoplasias Ovarianas/patologia
13.
Cancer Lett ; 553: 215994, 2023 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-36343786

RESUMO

The androgen inactivating UGT2B28 pathway emerges as a predictor of progression in prostate cancer (PCa). However, the clinical significance of UGT2B28 tumoral expression and its contribution to PCa progression remain unclear. Using the Canadian Prostate Cancer Biomarker Network biobank (CPCBN; n = 1512), we analyzed UGT2B28 tumor expression in relation to clinical outcomes in men with localized PCa. UGT2B28 was overexpressed in tumors compared to paired normal adjacent prostatic tissue and was associated with inferior outcomes. Functional analyses indicated that UGT2B28 promoted cell proliferation, and its expression was regulated by the androgen receptor (AR)/ARv7. Mechanistically, UGT2B28 was shown to be a protein partner of the endocytic adaptor protein huntingtin-interacting protein 1 (HIP1), increasing its stability and priming AR/epidermal growth factor receptor (EGFR) pathways, leading to ERK1/2 activation triggering cell proliferation and epithelial-to-mesenchymal transition (EMT). HIP1 knockdown in UGT2B28 positive cells, and dual pharmacological targeting of AR and EGFR pathways, abolished cell proliferative advantages conferred by UGT2B28. In conclusion, UGT2B28 is a prognosticator of progression in localized PCa, regulates both AR and EGFR oncogenic signaling pathways via HIP1, and therefore can be therapeutically targeted by using combination of existing AR/EGFR inhibitors.


Assuntos
Neoplasias da Próstata , Receptores Androgênicos , Masculino , Humanos , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Próstata/patologia , Receptores ErbB/metabolismo , Linhagem Celular Tumoral , Canadá , Neoplasias da Próstata/patologia , Proteínas de Ligação a DNA/genética
14.
Front Immunol ; 14: 1307873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38318505

RESUMO

Background: For patients with high grade serous carcinoma of the ovary (HGSC), survival rates have remained static for the last half century. Despite the presence of tumor mutations and infiltration of immune cells, existing immunotherapies have achieved little success against HGSC. These observations highlight a gap in the understanding of how the immune system functions and interacts within HGSC tumors. Methods: We analyzed duplicate core samples from 939 patients with HGSC to understand patterns of immune cell infiltration, localization, and associations with clinical features. We used high-parameter immunohistochemical/Opal multiplex, digital pathology, computational biology, and multivariate analysis to identify immune cell subsets and their associations with HGSC tumors. Results: We defined six patterns of cellular infiltration by spatially restricted unsupervised clustering of cell subsets. Each pattern was represented to some extent in most patient samples, but their specific distributions differed. Overall (OS) and progression-free survival (PFS) corresponded with higher infiltration of CD16a+ cells, and their co-localization with macrophages, T cells, NK cells, in one of six cellular neighborhoods that we defined with our spatial assessment. Conclusions: Immune cell neighborhoods containing CD16a+ cells are associated with improved OS and PFS for patients with HGSC. Patterns of immunologic neighborhoods differentiate patient outcomes, and could inform future, more precise approaches to treatment.


Assuntos
Cistadenocarcinoma Seroso , Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/genética , Linfócitos T/patologia , Carcinoma Epitelial do Ovário , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Cistadenocarcinoma Seroso/patologia , Células Matadoras Naturais/patologia , Macrófagos/patologia
15.
Front Oncol ; 13: 1286754, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188285

RESUMO

Introduction: Targeted-immunotherapies such as antibody-drug conjugates (ADC), chimeric antigen receptor (CAR) T cells or bispecific T-cell engagers (eg, BiTE®) all aim to improve cancer treatment by directly targeting cancer cells while sparing healthy tissues. Success of these therapies requires tumor antigens that are abundantly expressed and, ideally, tumor specific. The CD34-related stem cell sialomucin, podocalyxin (PODXL), is a promising target as it is overexpressed on a variety of tumor types and its expression is consistently linked to poor prognosis. However, PODXL is also expressed in healthy tissues including kidney podocytes and endothelia. To circumvent this potential pitfall, we developed an antibody, named PODO447, that selectively targets a tumor-associated glycoform of PODXL. This tumor glycoepitope is expressed by 65% of high-grade serous ovarian carcinoma (HGSOC) tumors. Methods: In this study we characterize these PODO447-expressing tumors as a distinct subset of HGSOC using four different patient cohorts that include pre-chemotherapy, post-neoadjuvant chemotherapy (NACT) and relapsing tumors as well as tumors from various peritoneal locations. Results: We find that the PODO447 epitope expression is similar across tumor locations and negligibly impacted by chemotherapy. Invariably, tumors with high levels of the PODO447 epitope lack infiltrating CD8+ T cells and CD20+ B cells/plasma cells, an immune phenotype consistently associated with poor outcome. Discussion: We conclude that the PODO447 glycoepitope is an excellent biomarker of immune "cold" tumors and a candidate for the development of targeted-therapies for these hard-to-treat cancers.

16.
Cancers (Basel) ; 14(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36010871

RESUMO

BACKGROUND: Poly (ADP-ribose) polymerase inhibitors (PARPi) were initially deployed to target breast and ovarian tumors with mutations in DNA damage response genes. Recently, PARPi have been shown to be beneficial in the treatment of prostate cancer (PC) patients having exhausted conventional therapeutics. Despite demonstrating promising response rates, all patients treated with PARPi eventually develop resistance. However, PARPi resistance in PC is not well understood, and further studies are required to understand PARPi resistance in PC to propose strategies to circumvent resistance. METHODS: Starting from well-established olaparib-sensitive PC cell lines (LNCaP, C4-2B and DU145), we derived olaparib-resistant (OR) PC cell lines and performed a microarray analysis. RESULTS: The olaparib IC50 values of OR cell lines increased significantly as compared to the parental cell lines. Gene expression analyses revealed that different pathways, including DNA repair, cell cycle regulation and autophagy, were affected by acquired resistance. A total of 195 and 87 genes were significantly upregulated and downregulated, respectively, in all three OR cell lines compared to their parental counterparts. Among these genes, we selected BRCC3, ROCK2 and ATG2B for validation. We showed that ROCK2 expression, basal autophagy and homologous recombination (HR) efficiency were increased in all OR cell lines. CONCLUSIONS: Our study provides a new in vitro model to study PARPi resistance in PC and suggests new possible targets to reverse resistance and prolong the benefits of PARPi treatment.

17.
Cancers (Basel) ; 14(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35954347

RESUMO

The progression of prostate cancer (PC) is often characterized by the development of castrate-resistant PC (CRPC). Patients with CRPC are treated with a variety of agents including new generation hormonal therapies or chemotherapy. However, as the cancer develops more resistance mechanisms, these drugs eventually become less effective and finding new therapeutic approaches is critical to improving patient outcomes. Previously, we have shown that IKKε depletion and IKKε inhibitors, BX795 and Amlexanox, decrease CRPC cell proliferation in vitro and in vivo and that IKKε inhibitors induce a senescence phenotype accompanied by increased DNA damage and genomic instability in CRPC cells. Here, we describe a new role for IKKε in DNA damage repair involving Rad51 and examine the therapeutic potential of Amlexanox combined with the PARP inhibitor Olaparib in CRPC cell lines. Combining Amlexanox with Olaparib decreased CRPC cell proliferation and enhanced DNA damage through the inhibition of Olaparib-induced Rad51 recruitment and expression in CRPC cells or IKKε-depleted PC-3 cells. We demonstrated that Rad51 promoter activity, measured by luciferase assay, was decreased with Amlexanox treatment or IKKε depletion and that Amlexanox treatment decreased the occupancy of transcription factor C/EBP-ß on the Rad51 promoter. Our mouse model also showed that Amlexanox combined with Olaparib inhibited tumor growth of CRPC xenografts. Our study highlights a new role for IKKε in DNA damage repair through the regulation of Rad51 transcription and provides a rationale for the combination of Amlexanox and Olaparib in the treatment of patients with CRPC.

18.
PLoS One ; 17(8): e0273145, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35969619

RESUMO

BACKGROUND: Cancer is a leading cause of disease burden worldwide and the first cause of mortality in Canada with 30.2% of deaths attributable to cancer. Given aging of the population and the improvement of prevention and treatment protocols, the number of cancer survivors is steadily increasing. These individuals have unique physical and mental health needs some of which can be addressed by integrating physical activity promotion into ongoing and long-term care. Despite the benefits of being active, delivery of PA programs for cancer patients in both clinical and community settings remains challenging. This knowledge-to-action protocol-called Kiné-Onco-aims to develop a practice guideline for the delivery, implementation, and scaling-up of cancer-specific physical activity promotion programs and services in clinical and community settings located in Québec, Canada. METHOD: The Kiné-Onco project involves knowledge synthesis of scientific and grey literature to establish the benefits and added value of physical activity for cancer patients and survivors, describes current practices in delivering physical activity programs, analyses quantitative data from electronic health records (EHR) of patients participating in a novel hospital-based physical activity program, collects and analyses qualitative data from patients and healthcare providers interviews about lived experience, facilitators, and barriers to physical activity promotion, outlines deliberative workshops among multidisciplinary team members to develop implementation guidelines for physical activity promotion, and summarizes a variety of knowledge transfer and exchange activities to disseminate the practice guidelines. DISCUSSION: This paper describes the protocol for a knowledge-to-action project aimed at producing and sharing actionable evidence. Our aim is that physical activity promotion programs and services be scaled up in such a way as to successfully integrate physical activity promotion throughout cancer treatment and survivorship in order to improve the physical and mental health of the growing population of individuals having received a cancer diagnosis.


Assuntos
Sobreviventes de Câncer , Neoplasias , Canadá , Exercício Físico , Pessoal de Saúde , Humanos , Neoplasias/prevenção & controle
19.
NPJ Precis Oncol ; 6(1): 47, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35768582

RESUMO

Hormone receptor expression is a characteristic of low-grade serous ovarian carcinoma (LGSOC). Studies investigating estrogen receptor (ER) and progesterone receptor (PR) expression levels suggest its prognostic and predictive significance, although their associations with key molecular aberrations are not well understood. As such, we sought to describe the specific genomic profiles associated with different ER/PR expression patterns and survival outcomes in a cohort of patients with advanced disease. The study comprised fifty-five advanced-staged (III/IV) LGSOCs from the Canadian Ovarian Experimental Unified Resource (COEUR) for which targeted mutation sequencing, copy-number aberration, clinical and follow-up data were available. ER, PR, and p16 expression were assessed by immunohistochemistry. Tumors were divided into low and high ER/PR expression groups based on Allred scoring. Copy number analysis revealed that PR-low tumors (Allred score <2) had a higher fraction of the genome altered by copy number changes compared to PR-high tumors (p = 0.001), with cancer genes affected within specific loci linked to altered peptidyl-tyrosine kinase, MAP-kinase, and PI3-kinase signaling. Cox regression analysis showed that ER-high (p = 0.02), PR-high (p = 0.03), stage III disease (p = 0.02), low residual disease burden (p = 0.01) and normal p16 expression (p<0.001) were all significantly associated with improved overall survival. This study provides evidence that genomic aberrations are linked to ER/PR expression in primary LGSOC.

20.
J Ovarian Res ; 15(1): 70, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668443

RESUMO

BACKGROUND: Mitochondrial dynamics (e.g. fission/fusion) play an important role in controlling chemoresistance in representative gynecologic malignancies, ovarian and cervical cancer. Processing the long form of Optic atrophy (L-Opa)1 is a distinctive character of mitochondrial fragmentation, associated with chemosensitivity. Here, we examined the role of prohibitin (Phb)1 in increasing L-Opa1 processing via the regulating mitochondrial protease, Oma1 and its direct interaction with p-p53 (ser15) and pro-apoptotic Bcl-2 antagonist/killer (Bak) 1 in the signaling axis and if this phenomenon is associated with prognosis of patients. METHODS: We compared Cisplatin (CDDP)-induced response of mitochondrial dynamics, molecular interaction among p-p53 (ser15)-Phb1-Bak, and chemoresponsiveness in paired chemosensitive and chemoresistant gynecologic cancer cells (ovarian and cervical cancer cell lines) using western blot, immunoprecipitation, sea horse, and immunofluorescence. Translational strategy with proximity ligation assessment in phb1-p-p53 (ser15) in human ovarian tumor sections further confirmed in vitro finding, associated with clinical outcome. RESULTS: We report that: (1) Knock-down of Phb1 prevents Cisplatin (cis-diamine-dichloroplatinum; CDDP) -induced changes in mitochondrial fragmentation and Oma1 mediated cleavage, and Opa1 processing; (2) In response to CDDP, Phb1 facilitates the p-p53 (ser15)-Phb1-Bak interaction in mitochondria in chemosensitive gynecologic cancer cells but not in chemoresistant cells; (3) Akt overexpression results in suppressed p-p53(Ser15)-Phb1 interaction and dysregulated mitochondrial dynamics, and (4) Consistent with in vitro findings, proximity ligation assessment (PLA) in human ovarian tumor sections demonstrated that p-p53(ser15)-Phb1-Bak interaction in mitochondria is associated with better chemoresponsiveness and clinical outcome of patients. Determining the molecular mechanisms by which Phb1 facilitates mitochondrial fragmentation and interacts with p53 may advance the current understanding of chemoresistance and pathogenesis of gynecologic cancer. CONCLUSION: Determining the key molecular mechanisms by which Phb1 facilitates the formation of p-p53 (ser15)-Bak-Phb1 and its involvement in the regulation of mitochondrial dynamics and apoptosis may ultimately contribute to the current understanding of molecular and cellular basis of chemoresistance in this gynecologic cancer.


Assuntos
Antineoplásicos , Neoplasias dos Genitais Femininos , Neoplasias Ovarianas , Neoplasias do Colo do Útero , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Dinâmica Mitocondrial , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Proibitinas , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...