Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(52): eabj9119, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936463

RESUMO

Quantum mechanics sets fundamental limits on how fast quantum states can be transformed in time. Two well-known quantum speed limits are the Mandelstam-Tamm and the Margolus-Levitin bounds, which relate the maximum speed of evolution to the system's energy uncertainty and mean energy, respectively. Here, we test concurrently both limits in a multilevel system by following the motion of a single atom in an optical trap using fast matter wave interferometry. We find two different regimes: one where the Mandelstam-Tamm limit constrains the evolution at all times, and a second where a crossover to the Margolus-Levitin limit occurs at longer times. We take a geometric approach to quantify the deviation from the speed limit, measuring how much the quantum evolution deviates from the geodesic path in the Hilbert space of the multilevel system. Our results are important to understand the ultimate performance of quantum computing devices and related advanced quantum technologies.

2.
Opt Express ; 29(2): 974-982, 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33726322

RESUMO

We present three high finesse tunable monolithic fiber Fabry-Perot cavities (FFPCs) with high passive mechanical stability. The fiber mirrors are fixed inside slotted glass ferrules, which guarantee an inherent alignment of the resonators. An attached piezoelectric element enables fast tuning of the FFPC resonance frequency over the entire free-spectral range for two of the designs. Stable locking of the cavity resonance is achieved for sub-Hertz feedback bandwidths, demonstrating the high passive stability. At the other limit, locking bandwidths up to tens of kilohertz, close to the first mechanical resonance, can be obtained. The root-mean-square frequency fluctuations are suppressed down to ∼2% of the cavity linewidth. Over a wide frequency range, the frequency noise is dominated by the thermal noise limit of the system's mechanical resonances. The demonstrated small footprint devices can be used advantageously in a broad range of applications like cavity-based sensing techniques, optical filters or quantum light-matter interfaces.

3.
Science ; 359(6376): 641, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29439232
4.
Audiol Neurootol ; 22(1): 30-40, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28601886

RESUMO

BACKGROUND: Auditory synaptopathy/neuropathy (AS/AN) is a heterogeneous disorder, which may be caused by environmental factors like postnatal hyperbilirubinemia or by genetic factors. The genetic forms are subdivided into syndromic and non-syndromic types, and show different inheritance patterns with a strong preponderance of autosomal-recessive forms. To date, only a single locus for non-syndromic autosomal-dominant AS/AN (AUNA1) has been reported in a single family, in which a non-coding DIAPH3 mutation was subsequently described as causative. MATERIALS AND METHODS: Here, we report detailed clinical data on a large German AS/AN family with slowly progressive postlingual hearing loss. Affected family members developed their first symptoms in their second decade. Moderate hearing loss in the fourth decade then progressed to profound hearing impairment in older family members. Comprehensive audiological and neurological tests were performed in the affected family members. Genetic testing comprised linkage analyses with polymorphic markers and a genome-wide linkage analysis using the Affymetrix GeneChip® Human Mapping 250K. RESULTS AND CONCLUSION: We identified a large family with autosomal-dominant AS/AN. By means of linkage analyses, the AUNA1 locus was excluded, and putatively linked regions on chromosomal bands 12q24 and 13q34 were identified as likely carrying the second locus for autosomal-dominant AS/AN (AUNA2). AUNA2 is associated with a slowly progressive postlingual hearing loss without any evidence for additional symptoms in other organ systems.


Assuntos
Cromossomos Humanos Par 12/genética , Cromossomos Humanos Par 13/genética , Nervo Coclear/fisiopatologia , Perda Auditiva Central/genética , Linhagem , Doenças do Nervo Vestibulococlear/genética , Adolescente , Adulto , Idoso , Audiometria de Resposta Evocada , Audiometria de Tons Puros , Criança , Progressão da Doença , Feminino , Ligação Genética , Alemanha , Perda Auditiva Central/fisiopatologia , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Doenças do Nervo Vestibulococlear/fisiopatologia , População Branca/genética
5.
Opt Lett ; 42(6): 1043-1046, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28295087

RESUMO

We have designed, built, and characterized a high-resolution objective lens that is compatible with an ultrahigh vacuum environment. The lens system exploits the principle of the Weierstrass sphere solid immersion lens to reach a numerical aperture (NA) of 0.92. Tailored to the requirements of optical lattice experiments, the objective lens features a relatively long working distance of 150 µm. Our two-lens design is remarkably insensitive to mechanical tolerances in spite of the large NA. Additionally, we demonstrate the application of a tapered optical fiber tip, as used in scanning near-field optical microscopy, to measure the point spread function (PSF) of a high NA optical system. From the PSF, we infer the wavefront aberration for the entire field of view of about 75 µm. Pushing the NA of an optical system to its ultimate limit enables novel applications in quantum technologies such as quantum control of atoms in optical microtraps with an unprecedented spatial resolution and photon collection efficiency.

6.
Phys Rev Lett ; 118(6): 065302, 2017 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-28234497

RESUMO

We create low-entropy states of neutral atoms by utilizing a conceptually new optical-lattice technique that relies on a high-precision, high-bandwidth synthesis of light polarization. Polarization-synthesized optical lattices provide two fully controllable optical lattice potentials, each of them confining only atoms in either one of the two long-lived hyperfine states. By employing one lattice as the storage register and the other one as the shift register, we provide a proof of concept using four atoms that selected regions of the periodic potential can be filled with one particle per site. We expect that our results can be scaled up to thousands of atoms by employing an atom-sorting algorithm with logarithmic complexity, which is enabled by polarization-synthesized optical lattices. Vibrational entropy is subsequently removed by sideband cooling methods. Our results pave the way for a bottom-up approach to creating ultralow-entropy states of a many-body system.

7.
Nat Genet ; 49(2): 249-255, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28067911

RESUMO

Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD.


Assuntos
Atresia das Cóanas/genética , Proteínas Cromossômicas não Histona/genética , Microftalmia/genética , Mutação de Sentido Incorreto/genética , Nariz/anormalidades , Animais , Linhagem Celular , Pré-Escolar , Epigênese Genética/genética , Feminino , Predisposição Genética para Doença/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Distrofia Muscular Facioescapuloumeral/genética , Xenopus laevis/genética
8.
Appl Phys B ; 123(1): 12, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-32214686

RESUMO

Elitzur and Vaidman have proposed a measurement scheme that, based on the quantum superposition principle, allows one to detect the presence of an object-in a dramatic scenario, a bomb-without interacting with it. It was pointed out by Ghirardi that this interaction-free measurement scheme can be put in direct relation with falsification tests of the macro-realistic worldview. Here we have implemented the "bomb test" with a single atom trapped in a spin-dependent optical lattice to show explicitly a violation of the Leggett-Garg inequality-a quantitative criterion fulfilled by macro-realistic physical theories. To perform interaction-free measurements, we have implemented a novel measurement method that correlates spin and position of the atom. This method, which quantum mechanically entangles spin and position, finds general application for spin measurements, thereby avoiding the shortcomings inherent in the widely used push-out technique. Allowing decoherence to dominate the evolution of our system causes a transition from quantum to classical behavior in fulfillment of the Leggett-Garg inequality.

9.
Phys Rev Lett ; 114(2): 023601, 2015 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-25635545

RESUMO

We report on the observation of cooperative radiation of exactly two neutral atoms strongly coupled to the single mode field of an optical cavity, which is close to the lossless-cavity limit. Monitoring the cavity output power, we observe constructive and destructive interference of collective Rayleigh scattering for certain relative distances between the two atoms. Because of cavity backaction onto the atoms, the cavity output power for the constructive two-atom case (N=2) is almost equal to the single-emitter case (N=1), which is in contrast to free-space where one would expect an N^{2} scaling of the power. These effects are quantitatively explained by a classical model as well as by a quantum mechanical model based on Dicke states. We extract information on the relative phases of the light fields at the atom positions and employ advanced cooling to reduce the jump rate between the constructive and destructive atom configurations. Thereby we improve the control over the system to a level where the implementation of two-atom entanglement schemes involving optical cavities becomes realistic.

10.
Rev Sci Instrum ; 86(12): 126108, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26724089

RESUMO

We report on an ultra-low birefringence dodecagonal glass cell for ultra-high vacuum applications. The epoxy-bonded trapezoidal windows of the cell are made of SF57 glass, which exhibits a very low stress-induced birefringence. We characterize the birefringence Δn of each window with the cell under vacuum conditions, obtaining values around 10(-8). After baking the cell at 150 °C, we reach a pressure below 10(-10) mbar. In addition, each window is antireflection coated on both sides, which is highly desirable for quantum optics experiments and precision measurements.

11.
Phys Rev Lett ; 110(19): 190601, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23705697

RESUMO

We report on the experimental realization of electric quantum walks, which mimic the effect of an electric field on a charged particle in a lattice. Starting from a textbook implementation of discrete-time quantum walks, we introduce an extra operation in each step to implement the effect of the field. The recorded dynamics of such a quantum particle exhibits features closely related to Bloch oscillations and interband tunneling. In particular, we explore the regime of strong fields, demonstrating contrasting quantum behaviors: quantum resonances versus dynamical localization depending on whether the accumulated Bloch phase is a rational or irrational fraction of 2π.

12.
Rev Sci Instrum ; 84(12): 126103, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24387479

RESUMO

We present an in situ method to measure the birefringence of a single vacuum window by means of microwave spectroscopy on an ensemble of cold atoms. Stress-induced birefringence can cause an ellipticity in the polarization of an initially linearly polarized laser beam. The amount of ellipticity can be reconstructed by measuring the differential vector light shift of an atomic hyperfine transition. Measuring the ellipticity as a function of the linear polarization angle allows us to infer the amount of birefringence Δn at the level of 10(-8) and identify the orientation of the optical axes. The key benefit of this method is the ability to separately characterize each vacuum window, allowing the birefringence to be precisely compensated in existing vacuum apparatuses.

13.
Phys Rev Lett ; 109(17): 173601, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23215185

RESUMO

We experimentally demonstrate real-time feedback control of the joint spin-state of two neutral cesium atoms inside a high finesse optical cavity. The quantum states are discriminated by their different cavity transmission levels. A Bayesian update formalism is used to estimate state occupation probabilities as well as transition rates. We stabilize the balanced two-atom mixed state, which is deterministically inaccessible, via feedback control and find very good agreement with Monte Carlo simulations. On average, the feedback loop achieves near optimal conditions by steering the system to the target state marginally exceeding the time to retrieve information about its state.

14.
Proc Natl Acad Sci U S A ; 109(25): 9770-4, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22665771

RESUMO

Engineering quantum particle systems, such as quantum simulators and quantum cellular automata, relies on full coherent control of quantum paths at the single particle level. Here we present an atom interferometer operating with single trapped atoms, where single particle wave packets are controlled through spin-dependent potentials. The interferometer is constructed from a sequence of discrete operations based on a set of elementary building blocks, which permit composing arbitrary interferometer geometries in a digital manner. We use this modularity to devise a space-time analogue of the well-known spin echo technique, yielding insight into decoherence mechanisms. We also demonstrate mesoscopic delocalization of single atoms with a separation-to-localization ratio exceeding 500; this result suggests their utilization beyond quantum logic applications as nano-resolution quantum probes in precision measurements, being able to measure potential gradients with precision 5 x 10(-4) in units of gravitational acceleration g.

15.
Phys Rev Lett ; 109(23): 235301, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23368215

RESUMO

We report on controlled doping of an ultracold Rb gas with single neutral Cs impurity atoms. Elastic two-body collisions lead to a rapid thermalization of the impurity inside the Rb gas, representing the first realization of an ultracold gas doped with a precisely known number of impurity atoms interacting via s-wave collisions. Inelastic interactions are restricted to a single three-body recombination channel in a highly controlled and pure setting, which allows us to determine the Rb-Rb-Cs three-body loss rate with unprecedented precision. Our results pave the way for a coherently interacting hybrid system of individually controllable impurities in a quantum many-body system.

16.
Opt Express ; 18(8): 7693-704, 2010 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-20588610

RESUMO

Applications of subwavelength-diameter optical fibres in nonlinear optics require precise knowledge of the submicrometre fibre waist diameter. We demonstrate a new technique for optical measurement of the diameter based on second- and third-harmonic generation with an accuracy of better than 2%. To generate the harmonic light, inter-modal phase matching must be achieved. We find that the phase-matching condition allows us to unambiguously deduce the fibre diameter from the wavelength of the harmonic light. High-resolution scanning electron microscope imaging is used to verify the results.

17.
Phys Rev Lett ; 105(15): 153603, 2010 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-21230902

RESUMO

We experimentally demonstrate the elementary case of electromagnetically induced transparency with a single atom inside an optical cavity probed by a weak field. We observe the modification of the dispersive and absorptive properties of the atom by changing the frequency of a control light field. Moreover, a strong cooling effect has been observed at two-photon resonance, increasing the storage time of our atoms twenty-fold to about 16 seconds. Our result points towards all-optical switching with single photons.

18.
Opt Express ; 17(23): 21216-21, 2009 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-19997360

RESUMO

We have realized efficient transverse cooling of an Indium atomic beam by combining optical pumping with a closed cycle UV laser cooling transition at 325.6 nm. The transverse velocity of the atomic beam is reduced to 13.5+/-3.8 cm/s, well below the Doppler cooling limit. The fraction of laser-cooled In atoms is enhanced to 12+/-3 % by optical pumping in the present experiment. It can be scaled up to approach 100% efficiency in cooling, providing high brightness atomic beams for further applications. Our results establish In on the map of elements suitable for applications involving laser cooling.

19.
Science ; 325(5937): 174-7, 2009 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-19589996

RESUMO

The quantum walk is the quantum analog of the well-known random walk, which forms the basis for models and applications in many realms of science. Its properties are markedly different from the classical counterpart and might lead to extensive applications in quantum information science. In our experiment, we implemented a quantum walk on the line with single neutral atoms by deterministically delocalizing them over the sites of a one-dimensional spin-dependent optical lattice. With the use of site-resolved fluorescence imaging, the final wave function is characterized by local quantum state tomography, and its spatial coherence is demonstrated. Our system allows the observation of the quantum-to-classical transition and paves the way for applications, such as quantum cellular automata.

20.
Phys Rev Lett ; 103(23): 233001, 2009 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-20366146

RESUMO

We control the quantum mechanical motion of neutral atoms in an optical lattice by driving microwave transitions between spin states whose trapping potentials are spatially offset. Control of this offset with nanometer precision allows for adjustment of the coupling strength between different motional states, analogous to an adjustable effective Lamb-Dicke factor. This is used both for efficient one-dimensional sideband cooling of individual atoms to a vibrational ground state population of 97% and to drive coherent Rabi oscillation between arbitrary pairs of vibrational states. We further show that microwaves can drive well resolved transitions between motional states in maximally offset, shallow lattices, and thus in principle allow for coherent control of long-range quantum transport.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...