Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antiviral Res ; 221: 105778, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065245

RESUMO

The ongoing threat of COVID-19 has highlighted the need for effective prophylaxis and convenient therapies, especially for outpatient settings. We have previously developed highly potent single-domain (VHH) antibodies, also known as nanobodies, that target the Receptor Binding Domain (RBD) of the SARS-CoV-2 Spike protein and neutralize the Wuhan strain of the virus. In this study, we present a new generation of anti-RBD nanobodies with superior properties. The primary representative of this group, Re32D03, neutralizes Alpha to Delta as well as Omicron BA.2.75; other members neutralize, in addition, Omicron BA.1, BA.2, BA.4/5, and XBB.1. Crystal structures of RBD-nanobody complexes reveal how ACE2-binding is blocked and also explain the nanobodies' tolerance to immune escape mutations. Through the cryo-EM structure of the Ma16B06-BA.1 Spike complex, we demonstrated how a single nanobody molecule can neutralize a trimeric spike. We also describe a method for large-scale production of these nanobodies in Pichia pastoris, and for formulating them into aerosols. Exposing hamsters to these aerosols, before or even 24 h after infection with SARS-CoV-2, significantly reduced virus load, weight loss and pathogenicity. These results show the potential of aerosolized nanobodies for prophylaxis and therapy of coronavirus infections.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Cricetinae , Humanos , SARS-CoV-2 , Aerossóis e Gotículas Respiratórios , Glicoproteína da Espícula de Coronavírus , Técnicas de Cultura de Células , Anticorpos Neutralizantes , Anticorpos Antivirais
2.
Hum Gene Ther ; 34(5-6): 203-216, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36802735

RESUMO

Oncolytic viruses are a promising technology to attack cancer cells and to recruit immune cells to the tumor site. Since the Lipocalin-2 receptor (LCN2R) is expressed on most cancer cells, we used its ligand LCN2 to target oncolytic adenoviruses (Ads) to cancer cells. Therefore, we fused a Designed Ankyrin Repeat Protein (DARPin) adapter binding the knob of Ad type 5 (knob5) to LCN2 to retarget the virus toward LCN2R with the aim of analyzing the basic characteristics of this novel targeting approach. The adapter was tested in vitro with Chinese Hamster Ovary (CHO) cells stably expressing the LCN2R and on 20 cancer cell lines (CCLs) using an Ad5 vector encoding luciferase and green fluorescent protein. Luciferase assays with the LCN2 adapter (LA) showed 10-fold higher infection compared with blocking adapter (BA) in CHO cells expressing LCN2R and in cells not expressing the LCN2R. Most CCLs showed an increased viral uptake of LA-bound virus compared with BA-bound virus and for five CCLs viral uptake was comparable to unmodified Ad5. Flow cytometry and hexon immunostainings also revealed increased uptake of LA-bound Ads compared with BA-bound Ads in most tested CCLs. Virus spread was studied in 3D cell culture models and nine CCLs showed increased and earlier fluorescence signals for LA-bound virus compared with BA-bound virus. Mechanistically, we show that the LA increases viral uptake only in the absence of its ligand Enterobactin (Ent) and independently of iron. Altogether, we characterized a novel DARPin-based system resulting in enhanced uptake demonstrating potential for future oncolytic virotherapy.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Cricetinae , Adenoviridae/genética , Lipocalina-2/genética , Repetição de Anquirina/genética , Células CHO , Proteínas de Repetição de Anquirina Projetadas , Cricetulus , Ligantes , Linhagem Celular Tumoral , Vírus Oncolíticos/genética , Terapia Viral Oncolítica/métodos , Luciferases , Replicação Viral , Neoplasias/genética , Neoplasias/terapia
3.
Int J Mol Sci ; 22(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34576237

RESUMO

Previous studies reported on the broad-spectrum antiviral function of heparin. Here we investigated the antiviral function of magnesium-modified heparin and found that modified heparin displayed a significantly enhanced antiviral function against human adenovirus (HAdV) in immortalized and primary cells. Nuclear magnetic resonance analyses revealed a conformational change of heparin when complexed with magnesium. To broadly explore this discovery, we tested the antiviral function of modified heparin against herpes simplex virus type 1 (HSV-1) and found that the replication of HSV-1 was even further decreased compared to aciclovir. Moreover, we investigated the antiviral effect against the new severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) and measured a 55-fold decreased viral load in the supernatant of infected cells associated with a 38-fold decrease in virus growth. The advantage of our modified heparin is an increased antiviral effect compared to regular heparin.


Assuntos
Antivirais/farmacologia , Heparina/farmacologia , Cloreto de Magnésio/farmacologia , Aciclovir/farmacologia , Adenovírus Humanos/efeitos dos fármacos , Adenovírus Humanos/fisiologia , Animais , Antivirais/química , Células CHO , Linhagem Celular Tumoral , Chlorocebus aethiops , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Fibroblastos , Heparina/química , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 1/fisiologia , Humanos , Cloreto de Magnésio/química , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Estrutura Molecular , Cultura Primária de Células , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Relação Estrutura-Atividade , Células Vero , Carga Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
4.
J Clin Med ; 10(11)2021 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-34072381

RESUMO

This study was performed as a head-to-head comparison of the performance characteristics of (1) two SARS-CoV-2-specific rapid antigen assays with real-time PCR as gold standard as well as (2) a fully automated high-throughput transcription-mediated amplification (TMA) assay and real-time PCR in a latent class analysis-based test comparison without a gold standard with several hundred samples in a low prevalence "real world" setting. Recorded sensitivity and specificity of the NADAL and the LumiraDx antigen assays and the Hologic Aptima SARS-CoV-2 TMA assay were 0.1429 (0.0194, 0.5835), 0.7644 (0.7016, 0.8174), and 0.7157 (0, 1) as well as 0.4545 (0.2022, 0.7326), 0.9954 (0.9817, 0.9988), and 0.9997 (not estimable), respectively. Agreement kappa between the positive results of the two antigen-based assays was 0.060 (0.002, 0.167) and 0.659 (0.492, 0.825) for TMA and real-time PCR. Samples with low viral load as indicated by cycle threshold (Ct) values > 30 were generally missed by both antigen assays, while 1:10 pooling suggested higher sensitivity of TMA compared to real-time PCR. In conclusion, both sensitivity and specificity speak in favor of the use of the LumiraDx rather than the NADAL antigen assay, while TMA results are comparably as accurate as PCR, when applied in a low prevalence setting.

5.
Diagnostics (Basel) ; 11(3)2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33802453

RESUMO

Due to the beginning of vaccination against COVID-19, serological discrimination between vaccine-associated humoral response and serology-based surveillance of natural SARS-CoV-2 infections as well as breakthrough infections becomes an issue of relevance. Here, we assessed the differentiated effects of the application of an RNA vaccine using SARS-CoV-2 spike protein epitopes on the results of both anti-spike protein-based serology (EUROIMMUN) and anti-nucleocapsid-based serology (VIROTECH). A total of 80 serum samples from vaccinees acquired at different time points after vaccination was assessed. While positive or borderline serological response in the anti-spike protein assay was observed for all samples (90% both IgG and IgA, 6.3% IgA only, 3.8% borderline IgG only), only a single case of a falsely positive IgM was observed for the anti-nucleocapsid assay as expected due to this assay's specificity. Positive anti-spike protein antibodies were already detectable in the second week after the first dose of vaccination, with higher titers after the second dose of the vaccine. In conclusion, the combined application of anti-spike protein-based serology and anti-nucleocapsid-based serology will provide a useful option for the discrimination of vaccination response and natural infection.

6.
Genes (Basel) ; 12(4)2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921696

RESUMO

Despite medical advances, gastric-cancer (GC) mortality remains high in Europe. Bacterial infection with Helicobacter pylori (H. pylori) and viral infection with the Epstein-Barr virus (EBV) are associated with the development of both distal and proximal gastric cancer. Therefore, the detection of these infections and the prediction of further cancer development could be clinically significant. To this end, microRNAs (miRNAs) could serve as promising new tools. MiRNAs are highly conserved noncoding RNAs that play an important role in gene silencing, mainly acting via translational repression and the degradation of mRNA targets. Recent reports demonstrate the downregulation of numerous miRNAs in GC, especially miR-22, miR-145, miR-206, miR-375, and miR-490, and these changes seem to promote cancer-cell invasion and tumor spreading. The dysregulation of miR-106b, miR-146a, miR-155, and the Let-7b/c complex seems to be of particular importance during H. pylori infection or gastric carcinogenesis. In contrast, many reports describe changes in host miRNA expression and outline the effects of bamHI-A region rightward transcript (BART) miRNA in EBV-infected tissue. The differential regulation of these miRNA, acting alone or in close interaction when both infections coexist, may therefore enable us to detect cancer earlier. In this review, we focus on the two different etiologies of gastric cancer and outline the molecular pathways through which H. pylori- or EBV-induced changes might synergistically act via miR-155 dysregulation to potentiate cancer risk. The three markers, namely, H. pylori presence, EBV infection, and miR-155 expression, may be checked in routine biopsies to evaluate the risk of developing gastric cancer.


Assuntos
Carcinogênese/patologia , Infecções por Vírus Epstein-Barr/complicações , Infecções por Helicobacter/complicações , Helicobacter pylori/isolamento & purificação , Herpesvirus Humano 4/isolamento & purificação , MicroRNAs/genética , Neoplasias Gástricas/patologia , Carcinogênese/genética , Infecções por Vírus Epstein-Barr/virologia , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Infecções por Helicobacter/virologia , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/virologia
7.
Diagnostics (Basel) ; 11(1)2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418886

RESUMO

Serological assays can contribute to the estimation of population proportions with previous immunologically relevant contact with the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) virus. In this study, we compared five commercially available diagnostic assays for the diagnostic identification of SARS-CoV-2-specific antibodies. Depending on the assessed immunoglobulin subclass, recorded sensitivity ranged from 17.0% to 81.9% with best results for immunoglobulin G. Specificity with blood donor sera ranged from 90.2% to 100%, with sera from EBV patients it ranged from 84.3% to 100%. Agreement from fair to nearly perfect was recorded depending on the immunoglobulin class between the assays, the with best results being found for immunoglobulin G. Only for this immunoglobulin class was the association between later sample acquisition times (about three weeks after first positive PCR results) and positive serological results in COVID-19 patients confirmed. In conclusion, acceptable and comparable reliability for the assessed immunoglobulin G-specific assays could be shown, while there is still room for improvement regarding the reliability of the assays targeting the other immunoglobulin classes.

8.
Front Immunol ; 12: 784145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35116025

RESUMO

As the coronavirus disease 2019 (COVID-19) pandemic is ongoing and new variants of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) are emerging, there is an urgent need for vaccines to protect individuals at high risk for complications and to potentially control disease outbreaks by herd immunity. Surveillance of rare safety issues related to these vaccines is progressing, since more granular data emerge about adverse events of SARS-CoV-2 vaccines during post-marketing surveillance. Varicella zoster virus (VZV), Epstein-Barr virus (EBV) and cytomegalovirus (CMV) reactivation has already been reported in COVID-19 patients. In addition, adverse events after SARS-CoV-2 mRNA vaccination have also been in the context of varicella zoster virus (VZV) reactivation and directly associated with the mRNA vaccine. We present the first case of CMV reactivation and pericarditis in temporal association with SARS-CoV-2 vaccination, particularly adenovirus-based DNA vector vaccine ChAdOx1 nCoV-19 against SARS-CoV-2. After initiation of antiviral therapy with oral valganciclovir, CMV viremia disappeared and clinical symptoms rapidly improved. Since huge vaccination programs are ongoing worldwide, post-marketing surveillance systems must be in place to assess vaccine safety that is important for the detection of any events. In the context of the hundreds of millions of individuals to be vaccinated against SARS-CoV-2, a potential causal association with CMV reactivation may result in a considerable number of cases with potentially severe complications.


Assuntos
ChAdOx1 nCoV-19/efeitos adversos , Citomegalovirus/efeitos dos fármacos , Pericardite/induzido quimicamente , SARS-CoV-2/imunologia , Ativação Viral/efeitos dos fármacos , Idoso , Antivirais/uso terapêutico , COVID-19/prevenção & controle , Citomegalovirus/fisiologia , Infecções por Citomegalovirus/induzido quimicamente , Infecções por Citomegalovirus/tratamento farmacológico , Infecções por Citomegalovirus/virologia , Feminino , Humanos , Pericardite/tratamento farmacológico , Pericardite/virologia , Resultado do Tratamento , Valganciclovir/uso terapêutico , Viremia/induzido quimicamente , Viremia/tratamento farmacológico , Viremia/virologia
9.
Int J Mol Sci ; 21(17)2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32887347

RESUMO

Recently an increasing number of new adenovirus types associated with type-dependent pathogenicity have been identified. However, identification of these clinical isolates represents the very first step to characterize novel pathogens. For deeper analyses, these adenoviruses need to be further characterized in basic virology experiments or they could be applied in translational research. To achieve this goal, it is essential to get genetic access and to enable genetic modification of these novel adenovirus genomes (deletion, insertion, and mutation). Here we demonstrate a high-throughput approach to get genetic access to new adenoviruses via homologous recombination. We first defined the cloning conditions regarding homology arm-length and input adenoviral genome amounts. Then we cloned four naturally occurring adenoviruses (Ad70, Ad73, Ad74, and Ad75) into easy-to-manipulate plasmids and genetically modified them by reporter gene insertion. Three recombinant adenoviruses (Ad70, Ad73, and Ad74) containing a reporter cassette were successfully reconstituted. These novel reporter-labeled adenoviruses were further characterized using the inserted luciferase reporter with respect to receptor usage, presence of anti-adenovirus antibodies, and tropism in vitro. The identified receptor usage, the relatively low prevalence of anti-adenovirus antibodies, and the various cancer cell line transduction pattern are important features of these new pathogens providing essential information for their therapeutic application.


Assuntos
Adenovírus Humanos/classificação , Adenovírus Humanos/genética , Clonagem Molecular/métodos , Genes Reporter , Vetores Genéticos/genética , Genoma Viral , Ensaios de Triagem em Larga Escala , Recombinação Homóloga , Humanos
10.
Mol Ther Methods Clin Dev ; 18: 376-389, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32695840

RESUMO

Methods for customizing and improving virus vector tropism are limited. In this study, we introduce a microRNA (miRNA)-regulated molecular method to enhance vector transduction without genome alteration. Based on the importance of adenovirus (Ad) vectors for cancer and gene treatment, we exemplified this technology for an Ad type 5 (Ad5) vector temporally carrying a knob from Ad37. We constructed a producer cell line stably expressing a fused Ad5/37 chimeric fiber comprising the Ad5 shaft-tail and the Ad37 knob and a miRNA inhibiting Ad5 knob expression (HEK293-Ad5/37-miRNA). The chimeric Ad5/37 vector resulted in enhanced transduction rates in Ad37 adequately and Ad5 poorly transduced cells. Particularly, encapsidation of the oncolytic Ad5-human telomerase reverse transcriptase (hTERT) vector genome into the chimeric Ad5/37 capsid showed efficient transduction of NK-92 carrier cells. These infected carrier cells then delivered the oncolytic vector to tumor cells, which resulted in enhanced Ad5-hTERT-mediated tumor cell killing. We show that this transiently capsid-modified chimeric vector carrying an Ad5 genome displayed higher transduction efficiencies of natural killer cell-derived NK-92 cells utilized as carriers in cancer immune therapy. In summary, transiently modified adenoviral vectors will have important implications for cancer and gene therapy.

11.
Virol J ; 17(1): 52, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32272960

RESUMO

BACKGROUND: There are over 100 known human adenovirus (HAdV) types, which are able to cause a broad variety of different self-limiting but also lethal diseases especially in immunocompromised patients. Only limited information about the pathogenesis and biology of the majority of these virus types is available. In the present study, we performed a systematic screen for coxsackievirus and adenovirus receptor (CAR)-usage of a large spectrum of HAdV types. METHODS: To study receptor usage we utilized a recombinant HAdV library containing HAdV genomes tagged with a luciferase and GFP encoding transgene. We infected CHO-CAR cells stably expressing the CAR receptor and to much information with tagged viruses (HAdV3, 14, 16, 50, 10, 24, 27, 37 and 69) and measured luciferase expression levels 26 and for some viruses (AdV10, - 24 and - 27) 52 h post-infection. As positive control, we applied human adenovirus type 5 (HAdV5) known to use the CAR receptor for cell entry. For viruses replication studies on genome level we applied digital PCR. RESULTS: Infection of CHO-CAR and CHO-K1 cells at various virus particle numbers per cell (vpc) revealed that HAdV10, 24, and 27 showed similar or decreased luciferase expression levels in the presence of CAR. In contrast, HAdV3, 14, 16, 50, 37 and 69 resulted in increased luciferase expression levels in our initial screening experiments. CAR usage of HAdV3, 14, 50, and 69 was not studied before, and therefore we experimentally confirmed CAR usage for these HAdV as novel viruses utilizing CAR as a receptor. To rule out that replication of HAdV in transduced CHO cells is responsible for increased transduction rates we performed replication assays on virus genome level, which revealed that there is no HAdV replication. CONCLUSION: In the present study, we screened a HAdV library and identified novel human HAdV using the CAR receptor. To our knowledge, this is the first description of CAR usage for HAdV 3, 14, 50, and 69.


Assuntos
Adenovírus Humanos/classificação , Adenovírus Humanos/fisiologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Internalização do Vírus , Animais , Células CHO , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Cricetulus , Biblioteca Gênica , Genoma Viral , Ensaios de Triagem em Larga Escala , Humanos , Luciferases/genética , Replicação Viral
12.
J Gen Virol ; 101(2): 208-215, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31961788

RESUMO

In previous studies, cold atmospheric plasma (CAP) was explored as an antibacterial and antiviral agent for the treatment of chronic wounds. The aim of the present study was to investigate whether CAP may also be suitable as an antiviral therapy against herpes simplex virus type 1 (HSV-1). HSV-1 most frequently manifests as recurrent herpes labialis, but it can also cause encephalitis, conjunctivitis or herpes neonatorum as a perinatal infection. HSV-1 encoding the reporter gene GFP was propagated. The CAP dose for HSV-1 treatment was gradually increased, ranging from 0-150 s, and aciclovir was used as a positive control. After CAP treatment, the virus suspension was applied to a standard HSV research cell line (Vero cells) and the neuroblastoma cell line SH-SY5Y as a model for neuronal infection. The results showed that plasma treatment had a negligible antiviral effect on HSV-1 in both Vero- and SH-SY5Y cells at high dose. However, when we lowered the viral load 100-fold, we observed a significantly decreased number of internalized HSV-1 genomes 3 h post-infection for CAP-treated viruses. This difference was less pronounced with respect to GFP expression levels 24 h post-infection, which was in sharp contrast to the acyclovir-treated positive control, for which the viral load was reduced from 95 to 25%. In summary, we observed a low but measurable antiviral effect of CAP on HSV-1.


Assuntos
Herpes Simples/terapia , Herpesvirus Humano 1/efeitos dos fármacos , Gases em Plasma/farmacologia , Aciclovir/farmacologia , Animais , Antivirais/farmacologia , Linhagem Celular , Chlorocebus aethiops , Humanos , Células Vero
13.
FEBS Lett ; 593(24): 3609-3622, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31758807

RESUMO

Human adenoviruses (Ads) have long been studied in the basic virology field and are exploited as vectors for gene therapy, vaccination, and oncolytic therapy. Ads are usually mild pathogens, but they can cause severe infections and symptoms in immunocompromised individuals. Ads show a large natural diversity and a broad spectrum of hosts. However, replication-competent and replication-deficient Ad vectors with therapeutic applications have been built mainly starting from human Ad type 5, because generating vectors from other human and animal Ads has proven challenging. This review provides an updated overview of vectors that are not derived from human Ad type 5. We discuss genetic engineering techniques for getting access to the natural diversity of human Ads and for vectorization of alternative Ad types. A catalogue of currently available vectorized human Ads and translational applications thereof is also compiled. We conclude with a perspective on Ad vectorology that looks into the future of Ad vectors in translational medicine.


Assuntos
Adenovírus Humanos/genética , Engenharia Genética/métodos , Adenovírus Humanos/fisiologia , Terapia Genética , Vetores Genéticos/administração & dosagem , Humanos , Vírus Oncolíticos , Vacinação , Replicação Viral
14.
PLoS One ; 13(10): e0202352, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30365500

RESUMO

More than 70 human adenovirus types were identified divided into 7 different species (A-G). Diseases caused by human adenoviruses are type-dependent and can range from mild to severe respiratory infections, gastrointestinal infections or eye infections such as epidemic keratoconjunctivitis. Unfortunately there is no specific anti-adenovirus therapy available. Here we addressed the question whether treatment with cold atmospheric plasma (CAP) for anti-adenoviral therapy such as virus-mediated ulcerations may be feasible. CAP has already been explored for the treatment of dermatological diseases such as chronic wounds. To investigate whether CAP is an effective antiviral tool, purified human adenovirus types derived from different human adenovirus species (HAdV -4, -5, -20, -35, -37, -50) tagged with luciferase were treated with defined dosages of plasma. The CAP treatment was varied by incrementally increasing the time span of CAP treatment. After CAP treatment, the virus containing solution was added to eukaryotic cells and the viral load was determined by measurement of luciferase expression levels. Through the plasma treatment the adenovirus driven luciferase expression directly correlating with adenovirus transduction efficiencies could be reduced for HAdV-5 and HAdV-37. Plasma treatment had no influence on adenovirus derived luciferase expression levels for HAdV-4 and HAdV-50 and it even had a positive effect on luciferase expression levels for HAdV-20 and HAdV-35. These results suggest that CAP has a type dependent effect on adenoviruses and that infectivity can be even increased for certain adenovirus types. Further studies should address the mechanisms behind this phenomenon. In summary we demonstrate that CAP may represent an interesting option for antiviral treatment in a virus type dependent manner.


Assuntos
Infecções por Adenovirus Humanos/terapia , Adenovírus Humanos/efeitos da radiação , Conjuntivite Viral/terapia , Gases em Plasma/uso terapêutico , Infecções por Adenovirus Humanos/fisiopatologia , Infecções por Adenovirus Humanos/virologia , Adenovírus Humanos/patogenicidade , Conjuntivite Viral/fisiopatologia , Conjuntivite Viral/virologia , DNA Viral , Humanos , Infecções Respiratórias/terapia , Infecções Respiratórias/virologia , Carga Viral/efeitos da radiação , Replicação Viral/efeitos da radiação
15.
Sci Rep ; 8(1): 13442, 2018 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194327

RESUMO

More than 70 human adenoviruses with type-dependent pathogenicity have been identified but biological information about the majority of these virus types is scarce. Here we employed multiple sequence alignments and structural information to predict receptor usage for the development of an adenoviral vector with novel biological features. We report the generation of a cloned adenovirus based on human adenovirus type 17 (HAdV17) with high sequence homology to the well characterized human adenovirus type 37 (HAdV37) that causes epidemic keratoconjunctivitis (EKC). Our study revealed that human CD46 (CD46) is involved in cell entry of HAdV17. Moreover, we found that HAdV17 infects endothelial cells (EC) in vitro including primary cells at higher efficiencies compared to the commonly used human adenovirus type 5 (HAdV5). Using a human CD46 transgenic mouse model, we observed that HAdV17 displays a broad tropism in vivo after systemic injection and that it transduces ECs in this mouse model. We conclude that the HAdV17-based vector may provide a novel platform for gene therapy.


Assuntos
Adenovírus Humanos/fisiologia , Células Endoteliais , Proteína Cofatora de Membrana/metabolismo , Transdução Genética , Tropismo Viral/fisiologia , Internalização do Vírus , Animais , Células CHO , Cricetulus , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Células Endoteliais/virologia , Vetores Genéticos , Células HEK293 , Células Endoteliais da Veia Umbilical Humana , Humanos , Células Jurkat , Proteína Cofatora de Membrana/genética , Camundongos Transgênicos
16.
Mol Cell Probes ; 28(5-6): 279-83, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25171808

RESUMO

Fragile X syndrome (FXS) is a common cause of intellectual disability, developmental delay and autism spectrum disorders. This syndrome is due to a functional loss of the FMR1 gene product FMRP, and, in most cases, it is caused by CGG repeat expansion in the FMR1 promoter. Yet, also other FMR1 mutations may cause a FXS-like phenotype. Since standard molecular testing does not include the analysis of the FMR1 coding region, the prevalence of point mutations causing FXS is not well known. Here, high resolution melting (HRM) was used to screen for FMR1 gene mutations in 508 males with clinical signs of mental retardation and developmental delay, but without CGG and GCC repeat expansions in the FMR1 gene and AFF2 genes, respectively. Sequence variations were identified by HRM analysis and verified by direct DNA sequencing. Two novel missense mutations (p.Gly482Ser in one patient and p.Arg534His in two unrelated patients), one intronic and two 3'-untranslated region (UTR) variations were identified in the FMR1 gene. Missense mutations in the FMR1 gene might account for a considerable proportion of cases in male patients with FXS-related symptoms, such as those linked to mental retardation and developmental delay.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/genética , Testes Genéticos , Mutação Puntual , DNA/química , DNA/genética , Síndrome do Cromossomo X Frágil/diagnóstico , Frequência do Gene , Genótipo , Humanos , Masculino , Mutação de Sentido Incorreto , Desnaturação de Ácido Nucleico , Fenótipo , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...