Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 14(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38473018

RESUMO

BACKGROUND: Ischemic heart disease (IHD) is the most prevalent type of cardiovascular disease. The main cause of IHD is atherosclerosis, which is a multifactorial inflammatory disease of blood vessels. Studies show that bacteria might have a significant impact on the pathogenesis of atherosclerosis and plaque rupture. This study aimed to evaluate the complexity of interactions between bacteria and the human body concerning metabolites and bacterial genes in patients with ischemic heart disease. METHODS: Bacterial 16S rDNA and wcaF, papC, and sdhC genes were detected in whole blood using a real-time PCR methodology. An enzyme-linked immunosorbent assay was used to measure the concentration of the LL-37 protein. An analysis of ARA in blood plasma was performed. RESULTS: Bacterial 16S rDNA was detected in 31% of the study patients, and the genes wcaF and sdhC in 20%. Enterobacterales genes were detected more frequently in patients younger than 65 years than in patients aged 65 years and older (p = 0.018) and in patients with type 2 diabetes (p = 0.048). Concentrations of the human antimicrobial peptide LL-37 and 12S-HETE concentrations were determined to be higher if patients had 16S rDNA and biofilm-specific genes. CONCLUSIONS: The results of this study enhance the understanding that Enterobacterales bacteria may participate in the pathogenesis of atherosclerosis and IHD. Bacterial DNA and host metabolites in higher concentrations appear to be detected.

2.
Drug Des Devel Ther ; 16: 2559-2568, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35959420

RESUMO

Background: Antiplatelet drugs, such as ticagrelor, which target platelet P2Y12 receptors, are used for prevention of ischemic heart disease. Ticagrelor is also known to have pleiotropic effects of unknown mechanisms. Ticagrelor could influence the expression of molecules involved in resolution of inflammation. This study aimed to investigate if ticagrelor could change the expression of CYP4F2 and its encoded protein concentration and, additionally, to determine ticagrelor possible antibacterial activity against gram-negative bacteria. Methods: CYP4F2 expression was determined in HUVEC and HepG2 cell lines by qPCR. CYP4F2 protein concentration was determined by ELISA. Antibiotic susceptibility testing was performed using a disc diffusion method. Results: Ticagrelor was observed to reduce the expression of CYP4F2 in HUVEC and HepG2 cell lines. It also reduced CYP4F2 protein levels in HUVEC cells. Ticagrelor had no bactericidal activity against gram-negative third generation cephalosporin resistant E. coli. Conclusion: Ticagrelor reduced CYP4F2 protein concentration in HUVEC, and CYP4F2 expression in HUVEC and HepG2 cells, but had no effect on third-generation cephalosporin-resistant E. coli strains.


Assuntos
Escherichia coli , Inibidores da Agregação Plaquetária , Plaquetas , Cefalosporinas/farmacologia , Escherichia coli/genética , Inibidores da Agregação Plaquetária/farmacologia , Inibidores da Agregação Plaquetária/uso terapêutico , Ticagrelor/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA