Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 28(32): 11767-78, 2012 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-22793962

RESUMO

The spontaneous reaction of diazonium salts on various substrates has been widely employed since it consists of a simple immersion of the substrate in the diazonium salt solution. As electrochemical processes involving the same diazonium salts, the spontaneous grafting is assumed to give covalently poly(phenylene)-like bonded films. Resistance to solvents and to ultrasonication is commonly accepted as indirect proof of the existence of a covalent bond. However, the most relevant attempts to demonstrate a metal-C interface bond have been obtained by an XPS investigation of spontaneously grafted films on copper. Similarly, our experiments give evidence of such a bond in spontaneously grafted films on nickel substrates in acetonitrile. In the case of gold substrates, the formation of a spontaneous film was unexpected but reported in the literature in parallel to our observations. Even if no interfacial bond was observed, formation of the films was explained by grafting of aryl cations or radicals on the surface arising from dediazoniation, the film growing later by azo coupling, radical addition, or cationic addition on the grafted phenyl layer. Nevertheless, none of these mechanisms fits our experimental results showing the presence of an Au-N bond. In this work, we present a fine spectroscopic analysis of the coatings obtained on gold and nickel substrates that allow us to propose a chemical structure of such films, in particular, their interface with the substrates. After testing the most probable mechanisms, we have concluded in favor of the involvement of two complementary mechanisms which are the direct reaction of diazonium salts with the gold surface that accounts for the observed Au-N interfacial bonds as well as the formation of aryl cations able to graft on the substrate through Au-C linkages.

2.
ACS Appl Mater Interfaces ; 2(4): 1177-83, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20361751

RESUMO

A new, efficient, palladium- and chromium-free process for the electroless plating of acrylonitrile-butadiene-styrene (ABS) polymers has been developed. The process is based on the ion-exchange properties of poly(acrylic acid) (PAA) chemically grafted onto ABS via a simple and one-step method that prevents using classical surface conditioning. Hence, ABS electroless plating can be obtained in three steps, namely: (i) the grafting of PAA onto ABS, (ii) the copper Cu(0) seeding of the ABS surface, and (iii) the nickel or copper metallization using commercial-like electroless plating bath. IR, XPS, and SEM were used to characterize each step of the process, and the Cu loading was quantified by atomic absorption spectroscopy. This process successfully compares with the commercial one based on chromic acid etching and palladium-based seed layer, because the final metallic layer showed excellent adhesion with the ABS substrate.


Assuntos
Resinas Acrílicas/química , Eletroquímica/métodos , Polímeros/química , Cátions , Quelantes/química , Cromatos/química , Cobre/química , Metais/química , Microscopia Eletrônica de Varredura/métodos , Plásticos/química , Espectrofotometria Atômica/métodos , Espectrofotometria Infravermelho/métodos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...