Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 1745, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409141

RESUMO

Human cytomegalovirus (HCMV) is a widespread pathogen that in immunocompromised hosts can cause life-threatening disease. Studying HCMV-exposed monocyte-derived dendritic cells by single-cell RNA sequencing, we observe that most cells are entered by the virus, whereas less than 30% of them initiate viral gene expression. Increased viral gene expression is associated with activation of the stimulator of interferon genes (STING) that usually induces anti-viral interferon responses, and with the induction of several pro- (RHOB, HSP1A1, DNAJB1) and anti-viral (RNF213, TNFSF10, IFI16) genes. Upon progression of infection, interferon-beta but not interferon-lambda transcription is inhibited. Similarly, interferon-stimulated gene expression is initially induced and then shut off, thus further promoting productive infection. Monocyte-derived dendritic cells are composed of 3 subsets, with one being especially susceptible to HCMV. In conclusion, HCMV permissiveness of monocyte-derived dendritic cells depends on complex interactions between virus sensing, regulation of the interferon response, and viral gene expression.


Assuntos
Citomegalovirus , Interferons , Humanos , Citomegalovirus/fisiologia , Transdução de Sinais/genética , Antivirais/metabolismo , Células Dendríticas/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Adenosina Trifosfatases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Cell Rep ; 42(6): 112597, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37289588

RESUMO

Murine cytomegalovirus (MCMV) infection of macrophages relies on MCMV-encoded chemokine 2 (MCK2), while infection of fibroblasts occurs independently of MCK2. Recently, MCMV infection of both cell types was found to be dependent on cell-expressed neuropilin 1. Using a CRISPR screen, we now identify that MCK2-dependent infection requires MHC class Ia/ß-2-microglobulin (B2m) expression. Further analyses reveal that macrophages expressing MHC class Ia haplotypes H-2b and H-2d, but not H-2k, are susceptible to MCK2-dependent infection with MCMV. The importance of MHC class I expression for MCK2-dependent primary infection and viral dissemination is highlighted by experiments with B2m-deficient mice, which lack surface expression of MHC class I molecules. In those mice, intranasally administered MCK2-proficient MCMV mimics infection patterns of MCK2-deficient MCMV in wild-type mice: it does not infect alveolar macrophages and subsequently fails to disseminate into the salivary glands. Together, these data provide essential knowledge for understanding MCMV-induced pathogenesis, tissue targeting, and virus dissemination.


Assuntos
Infecções por Citomegalovirus , Muromegalovirus , Camundongos , Animais , Antígenos de Histocompatibilidade Classe I , Macrófagos , Glândulas Salivares , Camundongos Endogâmicos BALB C
3.
Curr Opin Virol ; 60: 101328, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37031486

RESUMO

Cytomegaloviruses (CMVs) are typically disseminated by cell-to-cell transfer, which requires reprogramming of cellular signaling pathways and restructuring of the cell architecture. Viral particles not only transfer genetic information between cells, but also tegument proteins that enable the virus to counteract cellular defense mechanisms immediately upon entering cells. The UL25 gene family of CMVs encodes such tegument proteins and also gives rise to related nonstructural proteins expressed early in infection. Herein, we report on the functions attributed to UL25 family members of several ß-herpesviruses, particularly to the M25 proteins of mouse CMV that were found to interfere with the antiviral role of the p53 tumor suppressor protein and to mediate cytoskeleton rearrangement of infected cells.


Assuntos
Infecções por Citomegalovirus , Camundongos , Animais , Citomegalovirus/genética , Citomegalovirus/metabolismo , Comunicação Celular
4.
Curr Opin Immunol ; 82: 102307, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36996701

RESUMO

Cytomegaloviruses (CMVs) possess exquisite mechanisms enabling colonization, replication, and release allowing spread to new hosts. Moreover, they developed ways to escape the control of the host immune responses and hide latently within the host cells. Here, we outline studies that visualized individual CMV-infected cells using reporter viruses. These investigations provided crucial insights into all steps of CMV infection and mechanisms the host's immune response struggles to control it. Uncovering complex viral and cellular interactions and underlying molecular as well as immunological mechanisms are a prerequisite for the development of novel therapeutic interventions for successful treatment of CMV-related pathologies in neonates and transplant patients.


Assuntos
Infecções por Citomegalovirus , Recém-Nascido , Humanos , Citomegalovirus , Imunidade
5.
Pathogens ; 11(12)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36558888

RESUMO

Gammaherpesviruses, such as Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, are important human pathogens involved in lymphoproliferative disorders and tumorigenesis. Herpesvirus infections are characterized by a biphasic cycle comprised of an acute phase with lytic replication and a latent state. Murine gammaherpesvirus 68 (MHV-68) is a well-established model for the study of lytic and latent life cycles in the mouse. We investigated the interplay between the type I interferon (IFN)-mediated innate immune response and MHV-68 latency using sensitive bioluminescent reporter mice. Adoptive transfer of latently infected splenocytes into type I IFN receptor-deficient mice led to a loss of latency control. This was revealed by robust viral propagation and dissemination of MHV-68, which coincided with type I IFN reporter induction. Despite MHV-68 latency control by IFN, the continuous low-level cell-to-cell transmission of MHV-68 was detected in the presence of IFN signaling, indicating that IFN cannot fully prevent viral dissemination during latency. Moreover, impaired type I IFN signaling in latently infected splenocytes increased the risk of virus reactivation, demonstrating that IFN directly controls MHV-68 latency in infected cells. Overall, our data show that locally constrained type I IFN responses control the cellular reservoir of latency, as well as the distribution of latent infection to potential new target cells.

6.
mBio ; 13(5): e0100722, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36066102

RESUMO

Morphogenesis of herpesvirus particles is highly conserved; however, the capsid assembly and genome packaging of human cytomegalovirus (HCMV) exhibit unique features. Examples of these include the essential role of the small capsid protein (SCP) and the existence of the ß-herpesvirus-specific capsid-associated protein pp150. SCP and pp150, as well as the UL77 and UL93 proteins, are important capsid constituents, yet their precise mechanism of action is elusive. Here, we analyzed how deletion of the open reading frames (ORFs) encoding pUL77, pUL93, pp150, or SCP affects the protein composition of nuclear capsids. This was achieved by generating HCMV genomes lacking the respective genes, combined with a highly efficient transfection technique that allowed us to directly analyze these mutants in transfected cells. While no obvious effects were observed when pUL77, pUL93, or pp150 was missing, the absence of SCP impeded capsid assembly due to strongly reduced amounts of major capsid protein (MCP). Vice versa, when MCP was lacking, SCP became undetectable, indicating a mutual dependence of SCP and MCP for establishing appropriate protein levels. The SCP domain mediating stable MCP levels could be narrowed down to a C-terminal helix known to convey MCP binding. Interestingly, an SCP-EGFP (enhanced green fluorescent protein) fusion protein which also impaired the production of infectious progeny acted in a different manner, as capsid assembly was not abolished; however, SCP-EGFP-harboring capsids were devoid of DNA and trapped in paracrystalline nuclear structures. These results indicate that SCP is essential in HCMV because of its impact on MCP levels and reveal SCP as a potential target for antiviral inhibitors. IMPORTANCE Human cytomegalovirus (HCMV) is a ubiquitous pathogen causing life-threatening disease in immunocompromised individuals. Virus-specific processes such as capsid assembly and genome packaging can be exploited to design new antiviral strategies. Here, we report on a novel function of the HCMV small capsid protein (SCP), namely, ensuring stable levels of major capsid protein (MCP), thereby governing capsid assembly. Furthermore, we discovered a mutual dependence of the small and major capsid proteins to guarantee appropriate levels of the other respective protein and were able to pin down the SCP domain responsible for this effect to a region previously shown to mediate binding to the major capsid protein. In summary, our data contribute to the understanding of how SCP plays an essential part in the HCMV infection cycle. Moreover, disrupting the SCP-MCP interface may provide a starting point for the development of novel antiviral drugs.


Assuntos
Proteínas do Capsídeo , Capsídeo , Humanos , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Núcleo Celular/metabolismo , Citomegalovirus/genética , Citomegalovirus/metabolismo
7.
J Exp Med ; 219(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35852466

RESUMO

The innate and adaptive roles of γδ T cells and their clonal γδ T cell receptors (TCRs) in immune responses are still unclear. Recent studies of γδ TCR repertoire dynamics showed massive expansion of individual Vδ1+ γδ T cell clones during viral infection. To judge whether such expansion is random or actually represents TCR-dependent adaptive immune responses, information about their cognate TCR ligands is required. Here, we used CRISPR/Cas9-mediated screening to identify HLA-DRA, RFXAP, RFX5, and CIITA as required for target cell recognition of a CMV-induced Vγ3Vδ1+ TCR, and further characterization revealed a direct interaction of this Vδ1+ TCR with the MHC II complex HLA-DR. Since MHC II is strongly upregulated by interferon-γ, these results suggest an inflammation-induced MHC-dependent immune response of γδ T cells.


Assuntos
Infecções por Citomegalovirus , Linfócitos Intraepiteliais , Células Clonais , Antígenos HLA-DR , Humanos , Receptores de Antígenos de Linfócitos T gama-delta , Subpopulações de Linfócitos T
8.
Cell Mol Immunol ; 19(2): 234-244, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34992275

RESUMO

Global pandemics caused by influenza or coronaviruses cause severe disruptions to public health and lead to high morbidity and mortality. There remains a medical need for vaccines against these pathogens. CMV (cytomegalovirus) is a ß-herpesvirus that induces uniquely robust immune responses in which remarkably large populations of antigen-specific CD8+ T cells are maintained for a lifetime. Hence, CMV has been proposed and investigated as a novel vaccine vector for expressing antigenic peptides or proteins to elicit protective cellular immune responses against numerous pathogens. We generated two recombinant murine CMV (MCMV) vaccine vectors expressing hemagglutinin (HA) of influenza A virus (MCMVHA) or the spike protein of severe acute respiratory syndrome coronavirus 2 (MCMVS). A single injection of MCMVs expressing either viral protein induced potent neutralizing antibody responses, which strengthened over time. Importantly, MCMVHA-vaccinated mice were protected from illness following challenge with the influenza virus, and we excluded that this protection was due to the effects of memory T cells. Conclusively, we show here that MCMV vectors induce not only long-term cellular immunity but also humoral responses that provide long-term immune protection against clinically relevant respiratory pathogens.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Imunidade Humoral , Vírus da Influenza A/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , COVID-19/virologia , Chlorocebus aethiops , Citomegalovirus/imunologia , Cães , Feminino , Células HEK293 , Humanos , Imunidade Celular , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/virologia , Células Vero
9.
PLoS Biol ; 19(11): e3001423, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34735435

RESUMO

Herpesviruses cause severe diseases particularly in immunocompromised patients. Both genome packaging and release from the capsid require a unique portal channel occupying one of the 12 capsid vertices. Here, we report the 2.6 Å crystal structure of the pentameric pORF19 of the γ-herpesvirus Kaposi's sarcoma-associated herpesvirus (KSHV) resembling the portal cap that seals this portal channel. We also present the structure of its ß-herpesviral ortholog, revealing a striking structural similarity to its α- and γ-herpesviral counterparts despite apparent differences in capsid association. We demonstrate pORF19 pentamer formation in solution and provide insights into how pentamerization is triggered in infected cells. Mutagenesis in its lateral interfaces blocked pORF19 pentamerization and severely affected KSHV capsid assembly and production of infectious progeny. Our results pave the way to better understand the role of pORF19 in capsid assembly and identify a potential novel drug target for the treatment of herpesvirus-induced diseases.


Assuntos
Herpesvirus Humano 8/fisiologia , Fases de Leitura Aberta/genética , Multimerização Proteica , Proteínas Virais/metabolismo , Montagem de Vírus/fisiologia , Animais , Capsídeo/química , Sequência Conservada , Cristalografia por Raios X , Empacotamento do DNA , DNA Viral/genética , Drosophila , Células HEK293 , Herpesvirus Humano 8/ultraestrutura , Humanos , Modelos Moleculares , Mutagênese/genética , Proteínas Mutantes/metabolismo , Proteínas Virais/química
10.
mBio ; 12(4): e0177021, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34399625

RESUMO

The plasma membrane (PM) must be overcome by viruses during entry and release. Furthermore, the PM represents the cellular communication compartment and the immune system interface. Hence, viruses have evolved sophisticated strategies to remodel the PM, for instance to avoid immune sensing and clearance of infected cells. We performed a comprehensive analysis of cell surface dysregulation by two human-pathogenic viruses, human cytomegalovirus (HCMV) and human immunodeficiency virus type 1 (HIV-1), in primary macrophages, which are classical antigen-presenting cells and orchestrators of the immune system. Scanning ion conductance microscopy revealed a loss of roughness and an overall smooth phenotype of HCMV-infected macrophages, in contrast to HIV-1 infection. This phenotype was also evident on the molecular level. When we screened for cell surface receptors modulated by HCMV, 42 of 332 receptors tested were up- or downregulated, whereas HIV-1 affected only 7 receptors. In particular CD164, CD84, and CD180 were targeted by HCMV. Mechanistically, HCMV induced transcriptional silencing of these receptors in an interferon (IFN)-independent manner, and expression was reduced not only by lab-adapted HCMV but also by clinical HCMV isolates. Altogether, our plasma membrane profiling of human macrophages provides clues to understand how viruses evade the immune system and identified novel cell surface receptors targeted by HCMV. IMPORTANCE The PM is a key component that viruses have to cope with. It is a barrier for infection and egress and is critically involved in antiviral immune signaling. We hence asked the question how two immunomodulatory viruses, HIV-1 and HCMV, dysregulate this compartment in infected macrophages, relevant in vivo targets of both viruses. We employed a contact-free microscopic technique to image the PM of infected cells and performed a phenotypic flow cytometry-based screen to identify receptor modulations on a molecular level. Our results show that HIV-1 and HCMV differentially manipulate the PM of macrophages. While HIV-1-mediated changes are relatively subtle, HCMV induces major alterations of the PM. We identify novel immune receptors manipulated by HCMV and define mechanisms of how HCMV interferes with receptor expression. Altogether, our study reveals differential strategies of how two human-pathogenic viruses manipulate infected cells and identifies potential novel pathways of HCMV immune evasion.


Assuntos
Membrana Celular/fisiologia , Membrana Celular/virologia , Citomegalovirus/imunologia , HIV-1/imunologia , Evasão da Resposta Imune , Macrófagos/imunologia , Macrófagos/virologia , Células Cultivadas , Citomegalovirus/patogenicidade , HIV-1/patogenicidade , Humanos , Transdução de Sinais , Células THP-1
12.
Methods Mol Biol ; 2244: 133-158, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33555586

RESUMO

To fully understand the function of cytomegalovirus (CMV) genes, it is imperative that they are studied in the context of infection. Therefore, the targeted deletion of individual viral genes and the comparison of these loss-of-function viral mutants to the wild-type virus allow for the identification of the relevance and role for a particular gene in the viral replication cycle. Targeted CMV mutagenesis has made huge advances over the past 20 years. The cloning of CMV genomes into Escherichia coli as bacterial artificial chromosomes (BAC) allows for not only quick and efficient deletion of viral genomic regions, individual genes, or single-nucleotide exchanges in the viral genome but also the insertion of heterologous genetic sequences for gain-of-function approaches. The conceptual advantage of this strategy is that it overcomes the restrictions of recombinant technologies in cell culture systems. Namely, recombination in infected cells occurs only in a few clones, and their selection is not possible if the targeted genes are relevant for virus replication and are not able to compete for growth against the unrecombined parental viruses. On the other hand, BAC mutagenesis enables the selection for antibiotic resistance in E. coli, providing selective growth advantage to the recombined genomes and thus clonal selection of viruses with even extremely poor fitness. Here we describe the methods used for the generation of a CMV BAC, targeted mutagenesis of BAC clones, and transfection of human cells with CMV BAC DNA in order to reconstitute the viral infection process.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Clonagem Molecular/métodos , Citomegalovirus/genética , Células Cultivadas , Escherichia coli/genética , Genes Virais/genética , Genoma Viral/genética , Humanos , Mutagênese/genética , Transfecção/métodos , Replicação Viral/genética
13.
Elife ; 102021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33459589

RESUMO

Viral infections are controlled, and very often cleared, by activated T lymphocytes. The inducible co-stimulator (ICOS) mediates its functions by binding to its ligand ICOSL, enhancing T-cell activation and optimal germinal center (GC) formation. Here, we show that ICOSL is heavily downmodulated during infection of antigen-presenting cells by different herpesviruses. We found that, in murine cytomegalovirus (MCMV), the immunoevasin m138/fcr-1 physically interacts with ICOSL, impeding its maturation and promoting its lysosomal degradation. This viral protein counteracts T-cell responses, in an ICOS-dependent manner, and limits virus control during the acute MCMV infection. Additionally, we report that blockade of ICOSL in MCMV-infected mice critically regulates the production of MCMV-specific antibodies due to a reduction of T follicular helper and GC B cells. Altogether, these findings reveal a novel mechanism evolved by MCMV to counteract adaptive immune surveillance, and demonstrates a role of the ICOS:ICOSL axis in the host defense against herpesviruses.


Assuntos
Infecções por Herpesviridae/virologia , Evasão da Resposta Imune , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Proteína Coestimuladora de Linfócitos T Induzíveis/metabolismo , Muromegalovirus/fisiologia , Linfócitos T/imunologia , Animais , Camundongos
14.
PLoS Pathog ; 16(7): e1008560, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667948

RESUMO

Human cytomegalovirus (HCMV) causes serious complications to immune compromised hosts. Dendritic cells (iDCgB) expressing granulocyte-macrophage colony-stimulating factor, interferon-alpha and HCMV-gB were developed to promote de novo antiviral adaptive responses. Mice reconstituted with a human immune system (HIS) were immunized with iDCgB and challenged with HCMV, resulting into 93% protection. Immunization stimulated the expansion of functional effector memory CD8+ and CD4+ T cells recognizing gB. Machine learning analyses confirmed bone marrow T/CD4+, liver B/IgA+ and spleen B/IgG+ cells as predictive biomarkers of immunization (≈87% accuracy). CD8+ and CD4+ T cell responses against gB were validated. Splenic gB-binding IgM-/IgG+ B cells were sorted and analyzed at a single cell level. iDCgB immunizations elicited human-like IgG responses with a broad usage of various IgG heavy chain V gene segments harboring variable levels of somatic hypermutation. From this search, two gB-binding human monoclonal IgGs were generated that neutralized HCMV infection in vitro. Passive immunization with these antibodies provided proof-of-concept evidence of protection against HCMV infection. This HIS/HCMV in vivo model system supported the validation of novel active and passive immune therapies for future clinical translation.


Assuntos
Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus/imunologia , Vacinas contra Citomegalovirus/imunologia , Imunização Passiva , Imunoglobulina G/imunologia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Antígenos Virais/imunologia , Citomegalovirus/imunologia , Células Dendríticas/imunologia , Modelos Animais de Doenças , Humanos , Imunoglobulina G/farmacologia , Camundongos
15.
J Virol ; 94(20)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727874

RESUMO

To ensure productive infection, herpesviruses utilize tegument proteins and nonstructural regulatory proteins to counteract cellular defense mechanisms and to reprogram cellular pathways. The M25 proteins of mouse cytomegalovirus (MCMV) belong to the betaherpesvirus UL25 gene family that encodes viral proteins implicated with regulatory functions. Through affinity purification and mass spectrometric analysis, we discovered the tumor suppressor protein p53 as a host factor interacting with the M25 proteins. M25-p53 interaction in infected and transfected cells was confirmed by coimmunoprecipitation. Moreover, the proteins colocalized in nuclear dot-like structures upon both infection and inducible expression of the two M25 isoforms. p53 accumulated in wild-type MCMV-infected cells, while this did not occur upon infection with a mutant lacking the M25 gene. Both M25 proteins were able to mediate the effect, identifying them as the first CMV proteins responsible for p53 accumulation during infection. Interaction with M25 proteins led to substantial prolongation of the half-life of p53. In contrast to the higher abundance of the p53 protein in wild-type MCMV-infected cells, the transcript levels of the prominent p53 target genes Cdkn1a and Mdm2 were diminished compared to cells infected with the ΔM25 mutant, and this was associated with reduced binding of p53 to responsive elements within the respective promoters. Notably, the productivity of the M25 deletion mutant was partially rescued on p53-negative fibroblasts. We propose that the MCMV M25 proteins sequester p53 molecules in the nucleus of infected cells, reducing their availability for activating a subset of p53-regulated genes, thereby dampening the antiviral role of p53.IMPORTANCE Host cells use a number of factors to defend against viral infection. Viruses are, however, in an arms race with their host cells to overcome these defense mechanisms. The tumor suppressor protein p53 is an important sensor of cell stress induced by oncogenic insults or viral infections, which upon activation induces various pathways to ensure the integrity of cells. Viruses have to counteract many functions of p53, but complex DNA viruses such as cytomegaloviruses may also utilize some p53 functions for their own benefit. In this study, we discovered that the M25 proteins of mouse cytomegalovirus interact with p53 and mediate its accumulation during infection. Interaction with the M25 proteins sequesters p53 molecules in nuclear dot-like structures, limiting their availability for activation of a subset of p53-regulated target genes. Understanding the interaction between viral proteins and p53 may allow to develop new therapeutic strategies against cytomegalovirus and other viruses.


Assuntos
Núcleo Celular/metabolismo , Infecções por Herpesviridae/metabolismo , Muromegalovirus/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas Virais/metabolismo , Animais , Núcleo Celular/genética , Núcleo Celular/virologia , Células HCT116 , Células HEK293 , Infecções por Herpesviridae/genética , Humanos , Camundongos , Muromegalovirus/genética , Proteína Supressora de Tumor p53/genética , Proteínas Virais/genética
16.
Microorganisms ; 8(6)2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32466380

RESUMO

The rapid activation of pattern recognition receptor (PRR)-mediated type I interferon (IFN) signaling is crucial for the host response to infection. In turn, human cytomegalovirus (HCMV) must evade this potent response to establish life-long infection. Here, we reveal that the HCMV tegument protein UL35 antagonizes the activation of type I IFN transcription downstream of the DNA and RNA sensors cGAS and RIG-I, respectively. We show that ectopic expression of UL35 diminishes the type I IFN response, while infection with a recombinant HCMV lacking UL35 induces an elevated type I IFN response compared to wildtype HCMV. With a series of luciferase reporter assays and the analysis of signaling kinetics upon HCMV infection, we observed that UL35 downmodulates PRR signaling at the level of the key signaling factor TANK-binding kinase 1 (TBK1). Finally, we demonstrate that UL35 and TBK1 co-immunoprecipitate when co-expressed in HEK293T cells. In addition, we show that a previously reported cellular binding partner of UL35, O-GlcNAc transferase (OGT), post-translationally GlcNAcylates UL35, but that this modification is not required for the antagonizing effect of UL35 on PRR signaling. In summary, we have identified UL35 as the first HCMV protein to antagonize the type I IFN response at the level of TBK1, thereby enriching our understanding of how this important herpesvirus escapes host immune responses.

17.
Transpl Immunol ; 61: 101291, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32330566

RESUMO

Belatacept, Nulojix®, inhibits the interaction of CD28 on naïve T cells with B7.1/B7.2 (CD80/86) on antigen presenting cells, leading to T cell hyporesponsiveness and anergy and is approved as immunosuppressive drug in kidney transplantation. Due to its specificity for B7.1/2 molecules, side effects are reduced compared to other immunosuppressive drugs like calcineurin- and mTOR-inhibitors. Kidney transplant recipients under Belatacept-based immunosuppression presented with superior renal function and similar graft survival seven years after transplantation compared to cyclosporine treatment. However, de novo Belatacept-based immunosuppression was associated with increased risk of early rejections and viral (EBV) infections in clinical trials, especially in EBV-naïve patients. Since there is no vaccination against EBV infection available, EBV-derived virus like particles (EBV-VLPs) are currently developed as vaccine strategy. Here, we investigated the immunosuppressive effects of Belatacept compared to calcineurin- and mTOR inhibitors on allo- versus virus-specific T cells and the potency of EBV-VLPs to induce virus-specific T cell responses in vitro. Using PBMC of kidney recipients and healthy donors, we could demonstrate selective inhibition of allo-specific de novo T cell responses but not virus-specific memory T cell responses by Belatacept, as measured by IFN-γ production. In contrast, calcineurin inhibitors suppressed IFN-γ production of virus-specific memory CD8+ T cells completely. These results experimentally confirm the concept that Belatacept blocks CD28-mediated costimulation in newly primed naïve T cells but does not interfere with memory T cell responses being already independent from CD28-mediated costimulation. Additionally, we could show that EBV-VLPs induce a significant though weak IFN-γ-mediated T cell response in vitro in both kidney recipients and healthy donors. In summary, we demonstrated that immunosuppression of kidney recipients by Belatacept may primarily suppress de novo allo-specific T cell responses sparing virus-specific memory T cells. Moreover, EBV-VLPs could represent a novel strategy for vaccination of immunocompromised renal transplant recipients to prevent EBV reactivation especially under Belatacept-based immunosuppression.


Assuntos
Abatacepte/uso terapêutico , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/fisiologia , Fatores Imunológicos/uso terapêutico , Transplante de Rim , Linfócitos T/imunologia , Viroses/imunologia , Adolescente , Adulto , Idoso , Antígenos Virais/imunologia , Feminino , Voluntários Saudáveis , Humanos , Memória Imunológica , Isoantígenos/imunologia , Ativação Linfocitária , Masculino , Pessoa de Meia-Idade , Transplantados , Vacinas de Partículas Semelhantes a Vírus , Vírion/metabolismo , Adulto Jovem
18.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31666384

RESUMO

To counteract the serious health threat posed by known and novel viral pathogens, drugs that target a variety of viruses through a common mechanism have attracted recent attention due to their potential in treating (re)emerging infections, for which direct-acting antivirals are not available. We found that labyrinthopeptins A1 and A2, the prototype congeners of carbacyclic lanthipeptides, inhibit the proliferation of diverse enveloped viruses, including dengue virus, Zika virus, West Nile virus, hepatitis C virus, chikungunya virus, Kaposi's sarcoma-associated herpesvirus, cytomegalovirus, and herpes simplex virus, in the low micromolar to nanomolar range. Mechanistic studies on viral particles revealed that labyrinthopeptins induce a virolytic effect through binding to the viral membrane lipid phosphatidylethanolamine (PE). These effects are enhanced by a combined equimolar application of both labyrinthopeptins, and a clear synergism was observed across a concentration range corresponding to 10% to 90% inhibitory concentrations of the compounds. Time-resolved experiments with large unilamellar vesicles (LUVs) reveal that membrane lipid raft compositions (phosphatidylcholine [PC]/PE/cholesterol/sphingomyelin at 17:10:33:40) are particularly sensitive to labyrinthopeptins in comparison to PC/PE (90:10) LUVs, even though the overall PE amount remains constant. Labyrinthopeptins exhibited low cytotoxicity and had favorable pharmacokinetic properties in mice (half-life [t1/2] = 10.0 h), which designates them promising antiviral compounds acting by an unusual viral lipid targeting mechanism.IMPORTANCE For many viral infections, current treatment options are insufficient. Because the development of each antiviral drug is time-consuming and expensive, the prospect of finding broad-spectrum antivirals that can fight multiple, diverse viruses-well-known viruses as well as (re)emerging species-has gained attention, especially for the treatment of viral coinfections. While most known broad-spectrum agents address processes in the host cell, we found that targeting lipids of the free virus outside the host cell with the natural products labyrinthopeptin A1 and A2 is a viable strategy to inhibit the proliferation of a broad range of viruses from different families, including chikungunya virus, dengue virus, Zika virus, Kaposi's sarcoma-associated herpesvirus, and cytomegalovirus. Labyrinthopeptins bind to viral phosphatidylethanolamine and induce virolysis without exerting cytotoxicity on host cells. This represents a novel and unusual mechanism to tackle medically relevant viral infections.


Assuntos
Bacteriocinas/farmacologia , Microdomínios da Membrana/metabolismo , Viroses/metabolismo , Vírus/metabolismo , Aedes , Animais , Linhagem Celular , Microdomínios da Membrana/virologia , Fosfatidiletanolaminas/metabolismo , Viroses/tratamento farmacológico
19.
Front Immunol ; 9: 2734, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30524448

RESUMO

Human cytomegalovirus (HCMV) latency is typically harmless but reactivation can be largely detrimental to immune compromised hosts. We modeled latency and reactivation using a traceable HCMV laboratory strain expressing the Gaussia luciferase reporter gene (HCMV/GLuc) in order to interrogate the viral modulatory effects on the human adaptive immunity. Humanized mice with long-term (more than 17 weeks) steady human T and B cell immune reconstitutions were infected with HCMV/GLuc and 7 weeks later were further treated with granulocyte-colony stimulating factor (G-CSF) to induce viral reactivations. Whole body bio-luminescence imaging analyses clearly differentiated mice with latent viral infections vs. reactivations. Foci of vigorous viral reactivations were detectable in liver, lymph nodes and salivary glands. The number of viral genome copies in various tissues increased upon reactivations and were detectable in sorted human CD14+, CD169+, and CD34+ cells. Compared with non-infected controls, mice after infections and reactivations showed higher thymopoiesis, systemic expansion of Th, CTL, Treg, and Tfh cells and functional antiviral T cell responses. Latent infections promoted vast development of memory CD4+ T cells while reactivations triggered a shift toward effector T cells expressing PD-1. Further, reactivations prompted a marked development of B cells, maturation of IgG+ plasma cells, and HCMV-specific antibody responses. Multivariate statistical methods were employed using T and B cell immune phenotypic profiles obtained with cells from several tissues of individual mice. The data was used to identify combinations of markers that could predict an HCMV infection vs. reactivation status. In spleen, but not in lymph nodes, higher frequencies of effector CD4+ T cells expressing PD-1 were among the factors most suited to distinguish HCMV reactivations from infections. These results suggest a shift from a T cell dominated immune response during latent infections toward an exhausted T cell phenotype and active humoral immune response upon reactivations. In sum, this novel in vivo humanized model combined with advanced analyses highlights a dynamic system clearly specifying the immunological spatial signatures of HCMV latency and reactivations. These signatures can be merged as predictive biomarker clusters that can be applied in the clinical translation of new therapies for the control of HCMV reactivation.


Assuntos
Linfócitos B/imunologia , Infecções por Citomegalovirus/imunologia , Citomegalovirus/fisiologia , Receptor de Morte Celular Programada 1/imunologia , Linfócitos T/imunologia , Regulação para Cima/imunologia , Ativação Viral/imunologia , Latência Viral/imunologia , Animais , Linfócitos B/patologia , Transplante de Células-Tronco de Sangue do Cordão Umbilical , Infecções por Citomegalovirus/patologia , Sangue Fetal , Células HEK293 , Xenoenxertos , Humanos , Camundongos , Linfócitos T/patologia
20.
Sci Rep ; 8(1): 14823, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287927

RESUMO

Mouse models are important and versatile tools to study mechanisms and novel therapies of human disease in vivo. Both, the number and the complexity of murine models are constantly increasing and modification of genes of interest as well as any exogenous challenge may lead to unanticipated biological effects. Laboratory diagnostics of blood samples provide a comprehensive and rapid screening for multiple organ function and are fundamental to detect human disease. Here, we adapt an array of laboratory medicine-based tests commonly used in humans to establish a platform for standardized, multi-parametric, and quality-controlled diagnostics of murine blood samples. We determined sex-dependent reference intervals of 51 commonly used laboratory medicine tests for samples obtained from the C57BL/6J mouse strain. As a proof of principle, we applied these diagnostic tests in a mouse cytomegalovirus (MCMV) infection model to screen for organ damage. Consistent with histopathological findings, plasma concentrations of liver-specific enzymes were elevated, supporting the diagnosis of a virus-induced hepatitis. Plasma activities of aminotransferases correlated with viral loads in livers at various days after MCMV infection and discriminated infected from non-infected animals. This study provides murine blood reference intervals of common laboratory medicine parameters and illustrates the use of these tests for diagnosis of infectious disease in experimental animals.


Assuntos
Análise Química do Sangue/métodos , DNA Viral/sangue , Testes Diagnósticos de Rotina/métodos , Hepatite Viral Animal/diagnóstico , Infecções por Herpesviridae/veterinária , Muromegalovirus/isolamento & purificação , Doenças dos Roedores/diagnóstico , Animais , Hepatite Viral Animal/virologia , Infecções por Herpesviridae/diagnóstico , Infecções por Herpesviridae/virologia , Testes de Função Hepática , Camundongos Endogâmicos C57BL , Doenças dos Roedores/virologia , Transaminases/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...