Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Cell ; 42(1): 1-5, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38039965

RESUMO

Recent clinical trials for H3K27-altered diffuse midline gliomas (DMGs) have shown much promise. We present a consensus roadmap and identify three major barriers: (1) refinement of experimental models to include immune and brain-specific components; (2) collaboration among researchers, clinicians, and industry to integrate patient-derived data through sharing, transparency, and regulatory considerations; and (3) streamlining clinical efforts including biopsy, CNS-drug delivery, endpoint determination, and response monitoring. We highlight the importance of comprehensive collaboration to advance the understanding, diagnostics, and therapeutics for DMGs.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Criança , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/diagnóstico , Glioma/genética , Glioma/terapia , Mutação , Encéfalo/patologia , Biópsia
2.
Neuro Oncol ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38096156

RESUMO

Diffuse midline glioma (DMG) with H3K27M mutation is an aggressive and difficult to treat pediatric brain tumor. Recurrent gain of function mutations in H3.3 (H3.3A) and H3.1 (H3C2) at the 27th lysine to methionine (H3K27M) are seen in over 2/3 of DMGs, and are associated with a worse prognosis. Due to the anatomical location of DMG, traditional biopsy carries risk for neurologic injury as it requires penetration of vital midline structures. Further, radiographic (MRI) monitoring of DMG often shows non-specific changes, which makes therapeutic monitoring difficult. This indicates a critical need for more minimally invasive methods, such as liquid biopsy, to understand, diagnose, and monitor H3K27M DMG. Here we review the use of all modalities to date to detect biomarkers of H3K27M in CSF, blood, and urine, and compare their effectiveness in detection, diagnosis, and monitoring treatment response. We provide specific detail of recent efforts to monitor CSF and plasma H3K27M cell-free DNA in patients undergoing therapy with the imipridone ONC201. Lastly, we discuss the future of therapeutic monitoring of H3K27M-DMG, including biomarkers such as mitochondrial DNA, mutant and modified histones, and novel sequencing-based approaches for improved detection methods.

3.
Cancer Discov ; 13(11): 2370-2393, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37584601

RESUMO

Patients with H3K27M-mutant diffuse midline glioma (DMG) have no proven effective therapies. ONC201 has recently demonstrated efficacy in these patients, but the mechanism behind this finding remains unknown. We assessed clinical outcomes, tumor sequencing, and tissue/cerebrospinal fluid (CSF) correlate samples from patients treated in two completed multisite clinical studies. Patients treated with ONC201 following initial radiation but prior to recurrence demonstrated a median overall survival of 21.7 months, whereas those treated after recurrence had a median overall survival of 9.3 months. Radiographic response was associated with increased expression of key tricarboxylic acid cycle-related genes in baseline tumor sequencing. ONC201 treatment increased 2-hydroxyglutarate levels in cultured H3K27M-DMG cells and patient CSF samples. This corresponded with increases in repressive H3K27me3 in vitro and in human tumors accompanied by epigenetic downregulation of cell cycle regulation and neuroglial differentiation genes. Overall, ONC201 demonstrates efficacy in H3K27M-DMG by disrupting integrated metabolic and epigenetic pathways and reversing pathognomonic H3K27me3 reduction. SIGNIFICANCE: The clinical, radiographic, and molecular analyses included in this study demonstrate the efficacy of ONC201 in H3K27M-mutant DMG and support ONC201 as the first monotherapy to improve outcomes in H3K27M-mutant DMG beyond radiation. Mechanistically, ONC201 disrupts integrated metabolic and epigenetic pathways and reverses pathognomonic H3K27me3 reduction. This article is featured in Selected Articles from This Issue, p. 2293.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Glioma/genética , Glioma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Histonas/genética , Resultado do Tratamento , Epigênese Genética , Mutação
4.
Neuro Oncol ; 25(1): 54-67, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35605606

RESUMO

BACKGROUND: Diffuse midline gliomas (DMG) are highly invasive brain tumors with rare survival beyond two years past diagnosis and limited understanding of the mechanism behind tumor invasion. Previous reports demonstrate upregulation of the protein ID1 with H3K27M and ACVR1 mutations in DMG, but this has not been confirmed in human tumors or therapeutically targeted. METHODS: Whole exome, RNA, and ChIP-sequencing was performed on the ID1 locus in DMG tissue. Scratch-assay migration and transwell invasion assays of cultured cells were performed following shRNA-mediated ID1-knockdown. In vitro and in vivo genetic and pharmacologic [cannabidiol (CBD)] inhibition of ID1 on DMG tumor growth was assessed. Patient-reported CBD dosing information was collected. RESULTS: Increased ID1 expression in human DMG and in utero electroporation (IUE) murine tumors is associated with H3K27M mutation and brainstem location. ChIP-sequencing indicates ID1 regulatory regions are epigenetically active in human H3K27M-DMG tumors and prenatal pontine cells. Higher ID1-expressing astrocyte-like DMG cells share a transcriptional program with oligo/astrocyte-precursor cells (OAPCs) from the developing human brain and demonstrate upregulation of the migration regulatory protein SPARCL1. Genetic and pharmacologic (CBD) suppression of ID1 decreases tumor cell invasion/migration and tumor growth in H3.3/H3.1K27M PPK-IUE and human DIPGXIIIP* in vivo models of pHGG. The effect of CBD on cell proliferation appears to be non-ID1 mediated. Finally, we collected patient-reported CBD treatment data, finding that a clinical trial to standardize dosing may be beneficial. CONCLUSIONS: H3K27M-mediated re-activation of ID1 in DMG results in a SPARCL1+ migratory transcriptional program that is therapeutically targetable with CBD.


Assuntos
Neoplasias Encefálicas , Glioma , Animais , Humanos , Camundongos , Encéfalo/patologia , Neoplasias Encefálicas/genética , Proteínas de Ligação ao Cálcio , Proteínas da Matriz Extracelular/genética , Glioma/genética , Histonas/genética , Proteína 1 Inibidora de Diferenciação/genética , Mutação , Transdução de Sinais
5.
Front Oncol ; 12: 922928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35978801

RESUMO

Pediatric high-grade glioma (pHGG), including both diffuse midline glioma (DMG) and non-midline tumors, continues to be one of the deadliest oncologic diagnoses (both henceforth referred to as "pHGG"). Targeted therapy options aimed at key oncogenic receptor tyrosine kinase (RTK) drivers using small-molecule RTK inhibitors has been extensively studied, but the absence of proper in vivo modeling that recapitulate pHGG biology has historically been a research challenge. Thankfully, there have been many recent advances in animal modeling, including Cre-inducible transgenic models, as well as intra-uterine electroporation (IUE) models, which closely recapitulate the salient features of human pHGG tumors. Over 20% of pHGG have been found in sequencing studies to have alterations in platelet derived growth factor-alpha (PDGFRA), making growth factor modeling and inhibition via targeted tyrosine kinases a rich vein of interest. With commonly found alterations in other growth factors, including FGFR, EGFR, VEGFR as well as RET, MET, and ALK, it is necessary to model those receptors, as well. Here we review the recent advances in murine modeling and precision targeting of the most important RTKs in their clinical context. We additionally provide a review of current work in the field with several small molecule RTK inhibitors used in pre-clinical or clinical settings for treatment of pHGG.

6.
Cell Rep ; 38(2): 110216, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35021084

RESUMO

ATRX, a chromatin remodeler protein, is recurrently mutated in H3F3A-mutant pediatric glioblastoma (GBM) and isocitrate dehydrogenase (IDH)-mutant grade 2/3 adult glioma. Previous work has shown that ATRX-deficient GBM cells show enhanced sensitivity to irradiation, but the etiology remains unclear. We find that ATRX binds the regulatory elements of cell-cycle phase transition genes in GBM cells, and there is a marked reduction in Checkpoint Kinase 1 (CHEK1) expression with ATRX loss, leading to the early release of G2/M entry after irradiation. ATRX-deficient cells exhibit enhanced activation of master cell-cycle regulator ATM with irradiation. Addition of the ATM inhibitor AZD0156 doubles median survival in mice intracranially implanted with ATRX-deficient GBM cells, which is not seen in ATRX-wild-type controls. This study demonstrates that ATRX-deficient high-grade gliomas (HGGs) display Chk1-mediated dysregulation of cell-cycle phase transitions, which opens a window for therapies targeting this phenotype.


Assuntos
Quinase 1 do Ponto de Checagem/metabolismo , Glioma/metabolismo , Proteína Nuclear Ligada ao X/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Ciclo Celular/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem/fisiologia , Feminino , Histonas/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Recidiva Local de Neoplasia/metabolismo , Cultura Primária de Células , Proteína Nuclear Ligada ao X/genética
7.
J Cell Biol ; 218(4): 1148-1163, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30733233

RESUMO

Chromosome alignment at the equator of the mitotic spindle is a highly conserved step during cell division; however, its importance to genomic stability and cellular fitness is not understood. Normal mammalian somatic cells lacking KIF18A function complete cell division without aligning chromosomes. These alignment-deficient cells display normal chromosome copy numbers in vitro and in vivo, suggesting that chromosome alignment is largely dispensable for maintenance of euploidy. However, we find that loss of chromosome alignment leads to interchromosomal compaction defects during anaphase, abnormal organization of chromosomes into a single nucleus at mitotic exit, and the formation of micronuclei in vitro and in vivo. These defects slow cell proliferation and are associated with impaired postnatal growth and survival in mice. Our studies support a model in which the alignment of mitotic chromosomes promotes proper organization of chromosomes into a single nucleus and continued proliferation by ensuring that chromosomes segregate as a compact mass during anaphase.


Assuntos
Anáfase , Segregação de Cromossomos , Cromossomos Humanos , Fuso Acromático/fisiologia , Animais , Linhagem Celular , Proliferação de Células , Células Epiteliais/fisiologia , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Camundongos Knockout , Epitélio Pigmentado da Retina/fisiologia , Fuso Acromático/genética , Fuso Acromático/metabolismo , Fatores de Tempo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...